Pinch analysis, as a technique for optimising resource utilisation and promoting environmental sustainability: A review of recent case studies from the developing world and transition economies
{"title":"Pinch analysis, as a technique for optimising resource utilisation and promoting environmental sustainability: A review of recent case studies from the developing world and transition economies","authors":"G. Venkatesh","doi":"10.25082/REIE.2019.01.001","DOIUrl":null,"url":null,"abstract":"Pinch analysis, as a technique to optimise the utilisation of resources, traces its beginnings to the 1970s in Switzerland and the UK – ETH Zurich and Leeds University to be more precise. Over four decades down the line, this methodology has entrenched itself in research circles around the world. While the technique was developed, to begin with, for energy (heat) recovery, it has since then expanded to embrace several other fields, and enabled optimisation of resource utilisation in general. The motive behind this article is to perform a focused, selective review of recent case studies from the developing world and transition economies, having ‘pinch analysis’ in their titles and thereby as their ‘core, crux and gist’, during the period 2008-2018. The resources focused on, include heat energy, electrical energy, water, solid waste, money, time, land (surface area), storage space (volume), human resources, mass of resources in general and hydrogen, while a handful of publications have their focus on carbon dioxide (greenhouse gases in general) emissions. Multi-dimensional pinch analysis promises to be an effective tool for sustainability analysis in the years to come; most importantly in the developing world where social well-being and economic development are priorities in the years ahead, and they ought to be attained by a simultaneous truncation of the environmental footprint, in other words, an optimisation of resource utilisation as well as adverse environmental impacts. In other words, the focus ought to be on sustainable production (efficiency) and consumption (sufficiency).","PeriodicalId":58241,"journal":{"name":"资源环境与信息工程(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"资源环境与信息工程(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.25082/REIE.2019.01.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Pinch analysis, as a technique to optimise the utilisation of resources, traces its beginnings to the 1970s in Switzerland and the UK – ETH Zurich and Leeds University to be more precise. Over four decades down the line, this methodology has entrenched itself in research circles around the world. While the technique was developed, to begin with, for energy (heat) recovery, it has since then expanded to embrace several other fields, and enabled optimisation of resource utilisation in general. The motive behind this article is to perform a focused, selective review of recent case studies from the developing world and transition economies, having ‘pinch analysis’ in their titles and thereby as their ‘core, crux and gist’, during the period 2008-2018. The resources focused on, include heat energy, electrical energy, water, solid waste, money, time, land (surface area), storage space (volume), human resources, mass of resources in general and hydrogen, while a handful of publications have their focus on carbon dioxide (greenhouse gases in general) emissions. Multi-dimensional pinch analysis promises to be an effective tool for sustainability analysis in the years to come; most importantly in the developing world where social well-being and economic development are priorities in the years ahead, and they ought to be attained by a simultaneous truncation of the environmental footprint, in other words, an optimisation of resource utilisation as well as adverse environmental impacts. In other words, the focus ought to be on sustainable production (efficiency) and consumption (sufficiency).