K. Beblo-Vranesevic, Johanna Piepjohn, André Antunes, P. Rettberg
{"title":"Surviving Mars: new insights into the persistence of facultative anaerobic microbes from analogue sites","authors":"K. Beblo-Vranesevic, Johanna Piepjohn, André Antunes, P. Rettberg","doi":"10.1017/s1473550422000064","DOIUrl":null,"url":null,"abstract":"\n Mars analogue environments are some of the most extreme locations on Earth. Their unique combination of multiples extremes (e.g. high salinity, anoxia and low nutrient availability) make them valuable sources for finding new polyextremophilic microbes, and for exploring the limits of life. Mars, especially at its surface, is still considered to be very hostile to life but it probably possesses geological subsurface niches where the occurrence of (polyextremophilic) life is conceivable. Despite their well-recognized relevance, current knowledge on the capability of (facultative) anaerobic microbes to withstand extraterrestrial/Martian conditions, either as single strains or in communities, is still very sparse. Therefore, space experiments simulating the Martian environmental conditions by using space as a tool for astrobiological research are needed to substantiate the hypotheses of habitability of Mars. Addressing this knowledge gap is one of the main goals of the project MEXEM (Mars EXposed Extremophiles Mixture), where selected model organisms will be subjected to space for a period of 3 months. These experiments will take place on the Exobiology facility (currently under development and implementation), located outside the International Space Station. Such space experiments require a series of preliminary tests and ground data collection for the selected microbial strains. Here, we report on the survivability of Salinisphaera shabanensis and Buttiauxella sp. MASE-IM-9 after exposure to Mars-relevant stress factors (such as desiccation and ultraviolet (UV) radiation under anoxia). Both organisms showed survival after anoxic desiccation for up to 3 months but this could be further extended (nearly doubled) by adding artificial Mars regolith (MGS-1S; 0.5% wt/v) and sucrose (0.1 M). Survival after desiccation was also observed when both organisms were mixed before treatment. Mixing also positively influenced survival after exposure to polychromatic Mars-like UV radiation (200–400 nm) up to 12 kJ m−2, both in suspension and in a desiccated form.","PeriodicalId":13879,"journal":{"name":"International Journal of Astrobiology","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/s1473550422000064","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 3
Abstract
Mars analogue environments are some of the most extreme locations on Earth. Their unique combination of multiples extremes (e.g. high salinity, anoxia and low nutrient availability) make them valuable sources for finding new polyextremophilic microbes, and for exploring the limits of life. Mars, especially at its surface, is still considered to be very hostile to life but it probably possesses geological subsurface niches where the occurrence of (polyextremophilic) life is conceivable. Despite their well-recognized relevance, current knowledge on the capability of (facultative) anaerobic microbes to withstand extraterrestrial/Martian conditions, either as single strains or in communities, is still very sparse. Therefore, space experiments simulating the Martian environmental conditions by using space as a tool for astrobiological research are needed to substantiate the hypotheses of habitability of Mars. Addressing this knowledge gap is one of the main goals of the project MEXEM (Mars EXposed Extremophiles Mixture), where selected model organisms will be subjected to space for a period of 3 months. These experiments will take place on the Exobiology facility (currently under development and implementation), located outside the International Space Station. Such space experiments require a series of preliminary tests and ground data collection for the selected microbial strains. Here, we report on the survivability of Salinisphaera shabanensis and Buttiauxella sp. MASE-IM-9 after exposure to Mars-relevant stress factors (such as desiccation and ultraviolet (UV) radiation under anoxia). Both organisms showed survival after anoxic desiccation for up to 3 months but this could be further extended (nearly doubled) by adding artificial Mars regolith (MGS-1S; 0.5% wt/v) and sucrose (0.1 M). Survival after desiccation was also observed when both organisms were mixed before treatment. Mixing also positively influenced survival after exposure to polychromatic Mars-like UV radiation (200–400 nm) up to 12 kJ m−2, both in suspension and in a desiccated form.
期刊介绍:
International Journal of Astrobiology is the peer-reviewed forum for practitioners in this exciting interdisciplinary field. Coverage includes cosmic prebiotic chemistry, planetary evolution, the search for planetary systems and habitable zones, extremophile biology and experimental simulation of extraterrestrial environments, Mars as an abode of life, life detection in our solar system and beyond, the search for extraterrestrial intelligence, the history of the science of astrobiology, as well as societal and educational aspects of astrobiology. Occasionally an issue of the journal is devoted to the keynote plenary research papers from an international meeting. A notable feature of the journal is the global distribution of its authors.