Haipeng Cui , Qiang Meng , Teck-Hou Teng , Xiaobo Yang
{"title":"Spatiotemporal correlation modelling for machine learning-based traffic state predictions: state-of-the-art and beyond","authors":"Haipeng Cui , Qiang Meng , Teck-Hou Teng , Xiaobo Yang","doi":"10.1080/01441647.2023.2171151","DOIUrl":null,"url":null,"abstract":"<div><p>Predicting traffic states has gained more attention because of its practical significance. However, the existing literature lacks a critical review regarding how to address the spatiotemporal correlation in the ML-based traffic state prediction models from a traffic-oriented perspective. Therefore, this study aims to comprehensively and critically review the spatiotemporal correlation modelling (STCM) approaches adopted for developing ML-based traffic state prediction models and provide future research directions based on traffic-oriented characteristics and ML techniques. Concretely, we investigate the neural network-based traffic state prediction models and characterise the STCM of these models by a proposed systematic review framework including three components: (i) spatial feature representation that demonstrates how the spatial information regarding road network is formulated, (ii) temporal feature representation that illustrates a variety of approaches to extract the temporal features, and (iii) model structure analyses the model layout to address the spatial correlations and temporal correlations simultaneously. Finally, several open challenges regarding incorporating traffic-oriented characteristics such as signal effects with ML techniques are put up with future research directions provided and discussed.</p></div>","PeriodicalId":48197,"journal":{"name":"Transport Reviews","volume":"43 4","pages":"Pages 780-804"},"PeriodicalIF":9.5000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport Reviews","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S0144164723000107","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting traffic states has gained more attention because of its practical significance. However, the existing literature lacks a critical review regarding how to address the spatiotemporal correlation in the ML-based traffic state prediction models from a traffic-oriented perspective. Therefore, this study aims to comprehensively and critically review the spatiotemporal correlation modelling (STCM) approaches adopted for developing ML-based traffic state prediction models and provide future research directions based on traffic-oriented characteristics and ML techniques. Concretely, we investigate the neural network-based traffic state prediction models and characterise the STCM of these models by a proposed systematic review framework including three components: (i) spatial feature representation that demonstrates how the spatial information regarding road network is formulated, (ii) temporal feature representation that illustrates a variety of approaches to extract the temporal features, and (iii) model structure analyses the model layout to address the spatial correlations and temporal correlations simultaneously. Finally, several open challenges regarding incorporating traffic-oriented characteristics such as signal effects with ML techniques are put up with future research directions provided and discussed.
期刊介绍:
Transport Reviews is an international journal that comprehensively covers all aspects of transportation. It offers authoritative and current research-based reviews on transportation-related topics, catering to a knowledgeable audience while also being accessible to a wide readership.
Encouraging submissions from diverse disciplinary perspectives such as economics and engineering, as well as various subject areas like social issues and the environment, Transport Reviews welcomes contributions employing different methodological approaches, including modeling, qualitative methods, or mixed-methods. The reviews typically introduce new methodologies, analyses, innovative viewpoints, and original data, although they are not limited to research-based content.