An RRAM-based building block for reprogrammable non-uniform sampling ADCs

IF 1 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS IT-Information Technology Pub Date : 2023-05-01 DOI:10.1515/itit-2023-0021
Abhinav Vishwakarma, Markus Fritscher, Amelie Hagelauer, M. Reichenbach
{"title":"An RRAM-based building block for reprogrammable non-uniform sampling ADCs","authors":"Abhinav Vishwakarma, Markus Fritscher, Amelie Hagelauer, M. Reichenbach","doi":"10.1515/itit-2023-0021","DOIUrl":null,"url":null,"abstract":"Abstract RRAM devices have recently seen wide-spread adoption into applications such as neural networks and storage elements since their inherent non-volatility and multi-bit-capability renders them a possible candidate for mitigating the von-Neumann bottleneck. Researchers often face difficulties when developing edge devices, since dealing with sensors detecting parameters such as humidity or temperature often requires large and power-consuming ADCs. We propose a possible mitigation, namely using a RRAM device in combination with a comparator circuit to form a basic block for threshold detection. This can be expanded towards programmable non-uniform sampling ADCs, significantly reducing both area and power consumption since significantly smaller bit-resolutions are required. We demonstrate how a comparator circuit designed in 130 nm technology can be reprogrammed by programming the incorporated RRAM device. Our proposed building block consumes 83 µW.","PeriodicalId":43953,"journal":{"name":"IT-Information Technology","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IT-Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/itit-2023-0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract RRAM devices have recently seen wide-spread adoption into applications such as neural networks and storage elements since their inherent non-volatility and multi-bit-capability renders them a possible candidate for mitigating the von-Neumann bottleneck. Researchers often face difficulties when developing edge devices, since dealing with sensors detecting parameters such as humidity or temperature often requires large and power-consuming ADCs. We propose a possible mitigation, namely using a RRAM device in combination with a comparator circuit to form a basic block for threshold detection. This can be expanded towards programmable non-uniform sampling ADCs, significantly reducing both area and power consumption since significantly smaller bit-resolutions are required. We demonstrate how a comparator circuit designed in 130 nm technology can be reprogrammed by programming the incorporated RRAM device. Our proposed building block consumes 83 µW.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于可编程非均匀采样ADC的基于RRAM的构建块
摘要RRAM器件最近被广泛应用于神经网络和存储元件等应用中,因为其固有的非易失性和多位能力使其成为缓解冯·诺依曼瓶颈的可能候选者。研究人员在开发边缘设备时经常面临困难,因为处理检测湿度或温度等参数的传感器通常需要大型功耗ADC。我们提出了一种可能的缓解措施,即使用RRAM器件与比较器电路相结合来形成阈值检测的基本块。这可以扩展到可编程的非均匀采样ADC,显著减少面积和功耗,因为需要显著更小的比特分辨率。我们展示了在130中如何设计比较器电路 nm技术可以通过对所结合的RRAM器件进行编程来重新编程。我们提出的构建块消耗83 µW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IT-Information Technology
IT-Information Technology COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.80
自引率
0.00%
发文量
29
期刊最新文献
Wildfire prediction for California using and comparing Spatio-Temporal Knowledge Graphs Machine learning in AI Factories – five theses for developing, managing and maintaining data-driven artificial intelligence at large scale Machine learning applications Machine learning in sensor identification for industrial systems Machine learning and cyber security
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1