Combination of Resnet and Spatial Pyramid Pooling for Musical Instrument Identification

IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Cybernetics and Information Technologies Pub Date : 2022-03-01 DOI:10.2478/cait-2022-0007
Christine Dewi, Rung-Ching Chen
{"title":"Combination of Resnet and Spatial Pyramid Pooling for Musical Instrument Identification","authors":"Christine Dewi, Rung-Ching Chen","doi":"10.2478/cait-2022-0007","DOIUrl":null,"url":null,"abstract":"Abstract Identifying similar objects is one of the most challenging tasks in computer vision image recognition. The following musical instruments will be recognized in this study: French horn, harp, recorder, bassoon, cello, clarinet, erhu, guitar saxophone, trumpet, and violin. Numerous musical instruments are identical in size, form, and sound. Further, our works combine Resnet 50 with Spatial Pyramid Pooling (SPP) to identify musical instruments that are similar to one another. Next, the Resnet 50 and Resnet 50 SPP model evaluation performance includes the Floating-Point Operations (FLOPS), detection time, mAP, and IoU. Our work can increase the detection performance of musical instruments similar to one another. The method we propose, Resnet 50 SPP, shows the highest average accuracy of 84.64% compared to the results of previous studies.","PeriodicalId":45562,"journal":{"name":"Cybernetics and Information Technologies","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cait-2022-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 7

Abstract

Abstract Identifying similar objects is one of the most challenging tasks in computer vision image recognition. The following musical instruments will be recognized in this study: French horn, harp, recorder, bassoon, cello, clarinet, erhu, guitar saxophone, trumpet, and violin. Numerous musical instruments are identical in size, form, and sound. Further, our works combine Resnet 50 with Spatial Pyramid Pooling (SPP) to identify musical instruments that are similar to one another. Next, the Resnet 50 and Resnet 50 SPP model evaluation performance includes the Floating-Point Operations (FLOPS), detection time, mAP, and IoU. Our work can increase the detection performance of musical instruments similar to one another. The method we propose, Resnet 50 SPP, shows the highest average accuracy of 84.64% compared to the results of previous studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合Resnet和空间金字塔池进行乐器识别
摘要识别相似物体是计算机视觉图像识别中最具挑战性的任务之一。以下乐器将在本研究中得到认可:法国圆号、竖琴、录音机、巴松管、大提琴、单簧管、二胡、吉他萨克斯管、小号和小提琴。许多乐器在大小、形式和声音上都是相同的。此外,我们的作品将Resnet 50与空间金字塔池(SPP)相结合,以识别彼此相似的乐器。接下来,Resnet 50和Resnet 50 SPP模型评估性能包括浮点运算(FLOPS)、检测时间、mAP和IoU。我们的工作可以提高彼此相似的乐器的检测性能。与之前的研究结果相比,我们提出的方法Resnet 50 SPP显示出84.64%的最高平均准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cybernetics and Information Technologies
Cybernetics and Information Technologies COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.20
自引率
25.00%
发文量
35
审稿时长
12 weeks
期刊最新文献
A Review on State-of-Art Blockchain Schemes for Electronic Health Records Management Degradation Recoloring Deutan CVD Image from Block SVD Watermark Integration Approaches for Heterogeneous Big Data: A Survey Efficient DenseNet Model with Fusion of Channel and Spatial Attention for Facial Expression Recognition Hybrid Edge Detection Methods in Image Steganography for High Embedding Capacity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1