Genetic selection for lifetime reproductive performance.

A. Clutter
{"title":"Genetic selection for lifetime reproductive performance.","authors":"A. Clutter","doi":"10.1530/biosciprocs.18.0033","DOIUrl":null,"url":null,"abstract":"Genetic improvement of sow lifetime reproductive performance has value from both the economic perspectives of pork producers and the pork industry, but also from the perspective of ethical and animal welfare concerns by the general public. Genetic potential for piglets produced from individual litters is a primary determinant of lifetime prolificacy, but females must be able to sustain productivity without injury or death beyond the achievement of positive net present value. Evidence exists for between- and within-line genetic variation in sow lifetime performance, suggesting that improvements may be made by both line choices and genetic selection within lines. However, some of the same barriers to accurate within-line selection that apply to individual litter traits also present challenges to genetic selection for sow lifetime prolificacy: generally low heritabilites, sex-limited expression, expression after the age that animals are typically selected, and unfavorable genetic correlations with other traits in the profit function. In addition, there is an inherent conflict within the genetic nucleus herds where selections take place between the goal of shortened generation interval to accelerate genetic progress and the expression of sow lifetime traits. A proliferation in the industry of commercial multipliers with direct genetic ties and routine record flows to genetic nucleus herds provides a framework for accurate estimates of relevant genetic variances and covariances, and estimation of breeding values for sow lifetime traits that can be used in genetic selection.","PeriodicalId":87420,"journal":{"name":"Society of Reproduction and Fertility supplement","volume":"66 1","pages":"293-302"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Society of Reproduction and Fertility supplement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1530/biosciprocs.18.0033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Genetic improvement of sow lifetime reproductive performance has value from both the economic perspectives of pork producers and the pork industry, but also from the perspective of ethical and animal welfare concerns by the general public. Genetic potential for piglets produced from individual litters is a primary determinant of lifetime prolificacy, but females must be able to sustain productivity without injury or death beyond the achievement of positive net present value. Evidence exists for between- and within-line genetic variation in sow lifetime performance, suggesting that improvements may be made by both line choices and genetic selection within lines. However, some of the same barriers to accurate within-line selection that apply to individual litter traits also present challenges to genetic selection for sow lifetime prolificacy: generally low heritabilites, sex-limited expression, expression after the age that animals are typically selected, and unfavorable genetic correlations with other traits in the profit function. In addition, there is an inherent conflict within the genetic nucleus herds where selections take place between the goal of shortened generation interval to accelerate genetic progress and the expression of sow lifetime traits. A proliferation in the industry of commercial multipliers with direct genetic ties and routine record flows to genetic nucleus herds provides a framework for accurate estimates of relevant genetic variances and covariances, and estimation of breeding values for sow lifetime traits that can be used in genetic selection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
终生生殖性能的遗传选择。
无论是从猪肉生产者和猪肉行业的经济角度来看,还是从公众关注的伦理和动物福利的角度来看,母猪终身繁殖性能的遗传改良都具有价值。单个窝产的仔猪的遗传潜力是终生繁殖能力的主要决定因素,但雌性必须能够在实现正净现值之外保持不受伤或死亡的生产力。有证据表明,母猪终生生产性能存在株系间和株系内遗传变异,这表明,株系选择和株系内遗传选择可能都能改善母猪的生产性能。然而,适用于个体窝产性状的准确内系选择的一些相同障碍也对母猪终身繁殖的遗传选择提出了挑战:遗传率普遍较低,性别受限表达,在动物通常被选择的年龄之后表达,以及与利润函数中其他性状的不利遗传相关性。此外,在遗传核心群中,缩短世代间隔以加快遗传进程的目标与母猪终生性状的表达之间存在着内在的冲突。具有直接遗传联系和常规记录流的商业倍增器行业的激增为准确估计相关遗传方差和协方差以及估计可用于遗传选择的母猪终身性状的育种价值提供了框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of the pig placenta. Conceptus-uterus interactions in pigs: endometrial gene expression in response to estrogens and interferons from conceptuses. Temporal candidate gene expression patterns in the sow placenta during early gestation and the effect of maternal L-arginine supplementation. Genetic selection for lifetime reproductive performance. Global protein profiling of porcine cumulus cells in response to native oocyte secreted factors in vitro.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1