{"title":"Preparation of graphene-loading copper nanoparticles by freeze drying and its tribological properties","authors":"Runling Peng, Wei Wang, Peng Wang, Jinyue Liu, Shijiao Liu, Haonan Zhai, Junde Guo","doi":"10.1002/ls.1638","DOIUrl":null,"url":null,"abstract":"<p>To reduce the agglomeration of graphene and improve the synergistic friction-reducing and anti-wear action of graphene loading copper, one-step preparation of reduced graphene oxide/copper(RGO/Cu) nanoparticles by freeze-drying method was used, the influence of process parameters on particles size of RGO/Cu is studied by orthogonal experiments. The microstructures of RGO/Cu nanoparticles are characterized by SEM and AFM, and the tribological properties of RGO/Cu nanoparticles are studied on a tribometer. The results show that the purity of RGO/Cu nanoparticles prepared by freeze-drying was higher, and the copper nanoparticles 100–200 nm are uniformly attached to the graphene surface. It was found that RGO/Cu nanoparticles have better friction reduction and anti-wear properties than graphene mono-agent as lubricant additive. The synergistic anti-friction and anti-wear performance are better at the addition of 0.10 wt% for RGO/Cu nanoparticles. Compared with the base oil, the friction coefficient decreases by 23.1%, and the width of wear scar decreases by 62.5%.</p>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":"35 4","pages":"270-278"},"PeriodicalIF":1.8000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubrication Science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ls.1638","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To reduce the agglomeration of graphene and improve the synergistic friction-reducing and anti-wear action of graphene loading copper, one-step preparation of reduced graphene oxide/copper(RGO/Cu) nanoparticles by freeze-drying method was used, the influence of process parameters on particles size of RGO/Cu is studied by orthogonal experiments. The microstructures of RGO/Cu nanoparticles are characterized by SEM and AFM, and the tribological properties of RGO/Cu nanoparticles are studied on a tribometer. The results show that the purity of RGO/Cu nanoparticles prepared by freeze-drying was higher, and the copper nanoparticles 100–200 nm are uniformly attached to the graphene surface. It was found that RGO/Cu nanoparticles have better friction reduction and anti-wear properties than graphene mono-agent as lubricant additive. The synergistic anti-friction and anti-wear performance are better at the addition of 0.10 wt% for RGO/Cu nanoparticles. Compared with the base oil, the friction coefficient decreases by 23.1%, and the width of wear scar decreases by 62.5%.
期刊介绍:
Lubrication Science is devoted to high-quality research which notably advances fundamental and applied aspects of the science and technology related to lubrication. It publishes research articles, short communications and reviews which demonstrate novelty and cutting edge science in the field, aiming to become a key specialised venue for communicating advances in lubrication research and development.
Lubrication is a diverse discipline ranging from lubrication concepts in industrial and automotive engineering, solid-state and gas lubrication, micro & nanolubrication phenomena, to lubrication in biological systems. To investigate these areas the scope of the journal encourages fundamental and application-based studies on:
Synthesis, chemistry and the broader development of high-performing and environmentally adapted lubricants and additives.
State of the art analytical tools and characterisation of lubricants, lubricated surfaces and interfaces.
Solid lubricants, self-lubricating coatings and composites, lubricating nanoparticles.
Gas lubrication.
Extreme-conditions lubrication.
Green-lubrication technology and lubricants.
Tribochemistry and tribocorrosion of environment- and lubricant-interface interactions.
Modelling of lubrication mechanisms and interface phenomena on different scales: from atomic and molecular to mezzo and structural.
Modelling hydrodynamic and thin film lubrication.
All lubrication related aspects of nanotribology.
Surface-lubricant interface interactions and phenomena: wetting, adhesion and adsorption.
Bio-lubrication, bio-lubricants and lubricated biological systems.
Other novel and cutting-edge aspects of lubrication in all lubrication regimes.