Sitagliptin Potentiates the Anti-Neoplastic Activity of Doxorubicin in Experimentally-Induced Mammary Adenocarcinoma in Mice: Implication of Oxidative Stress, Inflammation, Angiogenesis, and Apoptosis

IF 2.3 Q3 PHARMACOLOGY & PHARMACY Scientia Pharmaceutica Pub Date : 2022-07-07 DOI:10.3390/scipharm90030042
M. Salama, R. A. Zaghloul, Rania M Khalil, M. El-Shishtawy
{"title":"Sitagliptin Potentiates the Anti-Neoplastic Activity of Doxorubicin in Experimentally-Induced Mammary Adenocarcinoma in Mice: Implication of Oxidative Stress, Inflammation, Angiogenesis, and Apoptosis","authors":"M. Salama, R. A. Zaghloul, Rania M Khalil, M. El-Shishtawy","doi":"10.3390/scipharm90030042","DOIUrl":null,"url":null,"abstract":"Sitagliptin (STG) is a highly selective dipeptidyl peptidase-4 inhibitor recently used in the treatment of type 2 diabetes. The current study aimed to investigate the anti-neoplastic effect of STG alone and in combination with Doxorubicin (Dox), a known chemotherapeutic agent but with ominous side effects. After intramuscular inoculation of 2 × 106 Ehrlich tumor cells, Female Swiss mice were divided into tumor-bearing control, STG-treated, Dox-treated, and a combination of STG and Dox-treated groups. The results showed a significant reduction in the tumor growth of the treated animals in comparison with those of the positive control group with a more prominent effect in the co-treated group. Where, the anti-proliferative and apoptotic effect of STG, and its chemo-sensitizing ability, when used in combination with Dox, was mediated by modulation of oxidative stress (MDA and GSH), attenuation of tumor inflammation (IL-6 and IL-1β), and angiogenesis (VEGF), suppressing proliferation (β-catenin and cyclin-D1) and enhancement of apoptosis (survivin, p53, caspase 3). Thus, in conclusion, STG as adjunctive therapy for Dox could be a strategy for the treatment of breast cancer patients, by their ability in hindering cell proliferation and minimizing the associated oxidative and inflammatory adverse reactions.","PeriodicalId":21601,"journal":{"name":"Scientia Pharmaceutica","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Pharmaceutica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/scipharm90030042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 3

Abstract

Sitagliptin (STG) is a highly selective dipeptidyl peptidase-4 inhibitor recently used in the treatment of type 2 diabetes. The current study aimed to investigate the anti-neoplastic effect of STG alone and in combination with Doxorubicin (Dox), a known chemotherapeutic agent but with ominous side effects. After intramuscular inoculation of 2 × 106 Ehrlich tumor cells, Female Swiss mice were divided into tumor-bearing control, STG-treated, Dox-treated, and a combination of STG and Dox-treated groups. The results showed a significant reduction in the tumor growth of the treated animals in comparison with those of the positive control group with a more prominent effect in the co-treated group. Where, the anti-proliferative and apoptotic effect of STG, and its chemo-sensitizing ability, when used in combination with Dox, was mediated by modulation of oxidative stress (MDA and GSH), attenuation of tumor inflammation (IL-6 and IL-1β), and angiogenesis (VEGF), suppressing proliferation (β-catenin and cyclin-D1) and enhancement of apoptosis (survivin, p53, caspase 3). Thus, in conclusion, STG as adjunctive therapy for Dox could be a strategy for the treatment of breast cancer patients, by their ability in hindering cell proliferation and minimizing the associated oxidative and inflammatory adverse reactions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
西格列汀增强阿霉素在实验诱导的小鼠乳腺腺癌中的抗肿瘤活性:氧化应激、炎症、血管生成和细胞凋亡的意义
西格列汀(STG)是一种高选择性二肽基肽酶-4抑制剂,最近用于治疗2型糖尿病。目前的研究旨在研究STG单独和联合阿霉素(Dox)的抗肿瘤作用,阿霉素是一种已知的化疗药物,但有不祥的副作用。肌肉内接种2×106埃立克氏肿瘤细胞后,将雌性瑞士小鼠分为荷瘤对照组、STG处理组、Dox处理组以及STG和Dox处理组合组。结果显示,与阳性对照组相比,治疗动物的肿瘤生长显著减少,在联合治疗组中效果更显著。其中,当STG与Dox联合使用时,其抗增殖和凋亡作用及其化学增敏能力是通过调节氧化应激(MDA和GSH)、减轻肿瘤炎症(IL-6和IL-1β)和血管生成(VEGF)、抑制增殖(β-catenin和cyclin-D1)和增强凋亡(survivin、p53、caspase 3)介导的。因此,总之,STG作为Dox的辅助治疗可能是治疗癌症患者的一种策略,因为它们能够阻碍细胞增殖并最大限度地减少相关的氧化和炎症不良反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientia Pharmaceutica
Scientia Pharmaceutica Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
4.60
自引率
4.00%
发文量
67
审稿时长
10 weeks
期刊最新文献
The Extraction of Bioactive Agents from Calophyllum inophyllum L., and Their Pharmacological Properties The Risks of “Getting High” on Over-the-Counter Drugs during Pregnancy Diastereomers of Spheroidal Form and Commercially Available Taxifolin Samples Inhibitory Effect of Mistletoe Ointment on DNCB-Induced Atopic Dermatitis in BALB/c Mice Assessing the Influence of a Rotating Magnetic Field on Ibuprofen Permeability from Diverse Pharmaceutical Formulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1