{"title":"Nose-to-Brain Targeting via Nanoemulsion: Significance and Evidence","authors":"S. Misra, K. Pathak","doi":"10.3390/colloids7010023","DOIUrl":null,"url":null,"abstract":"Background: Non-invasive and patient-friendly nose-to-brain pathway is the best-suited route for brain delivery of therapeutics as it bypasses the blood–brain barrier. The intranasal pathway (olfactory and trigeminal nerves) allows the entry of various bioactive agents, delivers a wide array of hydrophilic and hydrophobic drugs, and circumvents the hepatic first-pass effect, thus targeting neurological diseases in both humans and animals. The olfactory and trigeminal nerves make a bridge between the highly vascularised nasal cavity and brain tissues for the permeation and distribution, thus presenting a direct pathway for the entry of therapeutics into the brain. Materials: This review portrays insight into recent research reports (spanning the last five years) on the nanoemulsions developed for nose-to-brain delivery of actives for the management of a myriad of neurological disorders, namely, Parkinson’s disease, Alzheimer’s, epilepsy, depression, schizophrenia, cerebral ischemia and brain tumours. The information and data are collected and compiled from more than one hundred Scopus- and PubMed-indexed articles. Conclusions: The olfactory and trigeminal pathways facilitate better biodistribution and bypass BBB issues and, thus, pose as a possible alternative route for the delivery of hydrophobic, poor absorption and enzyme degradative therapeutics. Exploring these virtues, intranasal nanoemulsions have proven to be active, non-invasiveand safe brain-targeting cargos for the alleviation of the brain and other neurodegenerative disorders.","PeriodicalId":10433,"journal":{"name":"Colloids and Interfaces","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/colloids7010023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 5
Abstract
Background: Non-invasive and patient-friendly nose-to-brain pathway is the best-suited route for brain delivery of therapeutics as it bypasses the blood–brain barrier. The intranasal pathway (olfactory and trigeminal nerves) allows the entry of various bioactive agents, delivers a wide array of hydrophilic and hydrophobic drugs, and circumvents the hepatic first-pass effect, thus targeting neurological diseases in both humans and animals. The olfactory and trigeminal nerves make a bridge between the highly vascularised nasal cavity and brain tissues for the permeation and distribution, thus presenting a direct pathway for the entry of therapeutics into the brain. Materials: This review portrays insight into recent research reports (spanning the last five years) on the nanoemulsions developed for nose-to-brain delivery of actives for the management of a myriad of neurological disorders, namely, Parkinson’s disease, Alzheimer’s, epilepsy, depression, schizophrenia, cerebral ischemia and brain tumours. The information and data are collected and compiled from more than one hundred Scopus- and PubMed-indexed articles. Conclusions: The olfactory and trigeminal pathways facilitate better biodistribution and bypass BBB issues and, thus, pose as a possible alternative route for the delivery of hydrophobic, poor absorption and enzyme degradative therapeutics. Exploring these virtues, intranasal nanoemulsions have proven to be active, non-invasiveand safe brain-targeting cargos for the alleviation of the brain and other neurodegenerative disorders.