Performance prediction of flat sheet commercial nanofiltration membrane using Donnan-Steric Pore Model

IF 0.8 4区 工程技术 Q4 ENGINEERING, CHEMICAL Membrane Water Treatment Pub Date : 2021-03-01 DOI:10.12989/MWT.2021.12.2.059
D. Qadir, R. Nasir, H. Mukhtar, F. Uddin
{"title":"Performance prediction of flat sheet commercial nanofiltration membrane using Donnan-Steric Pore Model","authors":"D. Qadir, R. Nasir, H. Mukhtar, F. Uddin","doi":"10.12989/MWT.2021.12.2.059","DOIUrl":null,"url":null,"abstract":"The rejection of sodium chloride (NaCl) and calcium chloride (CaCl2) single salt solutions were carried out for commercial nanofiltration NFDK membrane. Results showed that the NFDK membrane had a negative surface charge and had a higher observed rejection of 93.65% for calcium (Ca2+) ion and 78.27% for sodium (Na+) ions. Prediction of rejection for aqueous solutions of both salts was made using Donnan Steric Pore Model based on Extended Nernst-Planck Equation in addition to concentration polarization film theory. A MATLAB program was developed to execute the model calculations. Absolute Average Relative Error (% AARE) was found below 5% for real rejection of the NFDK membrane. This research could be used successfully to assess the membrane characterization parameter using a proposed procedure which can reduce the number of experiments.","PeriodicalId":18416,"journal":{"name":"Membrane Water Treatment","volume":"12 1","pages":"059"},"PeriodicalIF":0.8000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membrane Water Treatment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/MWT.2021.12.2.059","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1

Abstract

The rejection of sodium chloride (NaCl) and calcium chloride (CaCl2) single salt solutions were carried out for commercial nanofiltration NFDK membrane. Results showed that the NFDK membrane had a negative surface charge and had a higher observed rejection of 93.65% for calcium (Ca2+) ion and 78.27% for sodium (Na+) ions. Prediction of rejection for aqueous solutions of both salts was made using Donnan Steric Pore Model based on Extended Nernst-Planck Equation in addition to concentration polarization film theory. A MATLAB program was developed to execute the model calculations. Absolute Average Relative Error (% AARE) was found below 5% for real rejection of the NFDK membrane. This research could be used successfully to assess the membrane characterization parameter using a proposed procedure which can reduce the number of experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Donnan-Steric孔模型的平板商用纳滤膜性能预测
研究了商用纳滤NFDK膜对氯化钠(NaCl)和氯化钙(CaCl2)单盐溶液的截留效果。结果表明,NFDK膜表面带负电荷,对钙离子(Ca2+)和钠离子(Na+)的排异率分别为93.65%和78.27%。采用基于扩展能思-普朗克方程的Donnan立体孔隙模型,结合浓度极化膜理论对两种盐水溶液的截除率进行了预测。编写了MATLAB程序进行模型计算。发现NFDK膜的真实排斥的绝对平均相对误差(% AARE)低于5%。本研究可以成功地利用所提出的方法来评估膜的表征参数,从而减少实验次数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Membrane Water Treatment
Membrane Water Treatment ENGINEERING, CHEMICAL-WATER RESOURCES
CiteScore
1.90
自引率
30.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: The Membrane and Water Treatment(MWT), An International Journal, aims at opening an access to the valuable source of technical information and providing an excellent publication channel for the global community of researchers in Membrane and Water Treatment related area. Specific emphasis of the journal may include but not limited to; the engineering and scientific aspects of understanding the basic mechanisms and applying membranes for water and waste water treatment, such as transport phenomena, surface characteristics, fouling, scaling, desalination, membrane bioreactors, water reuse, and system optimization.
期刊最新文献
Modeling of biofilm growth and the related changes in hydraulic properties of porous media fMWNTs/GO/MnO2 nanocomposites as additives in a membrane for the removal of crystal violet Prioritizing water distribution pipe renewal based on seismic risk and construction cost Comparison of pollutants in stormwater runoff from asphalt and concrete roads Application of graphene, graphene oxide, and boron nitride nanosheets in the water treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1