Excitation of an extreme wave by standing current

IF 2.6 3区 地球科学 Q2 OCEANOGRAPHY Oceanologia Pub Date : 2023-10-01 DOI:10.1016/j.oceano.2023.06.005
Pavlo Anakhov
{"title":"Excitation of an extreme wave by standing current","authors":"Pavlo Anakhov","doi":"10.1016/j.oceano.2023.06.005","DOIUrl":null,"url":null,"abstract":"<div><p>The statistics suggest that extreme waves cause more damage in shallow waters and at the coast than in the deep sea. In the linear theory of the formation of extreme waves, their existence is interpreted as a local superposition of surface monochromatic waves. The event of excitation of extreme waves can be understood as an increase in natural oscillations of the water basin. The conditions for the excitation and sustaining of natural oscillations are the proximity of the periods of exciting traveling waves to the period of traveling waves and the speed of movement of the exciting current to the phase speed of propagation of traveling waves of the reservoir. Examples of stimulating natural oscillations are presented. We determined the range of expected periods of natural oscillations, which range from 30 seconds to 24 hours. Synchronously and in common-mode with the oscillations of standing waves between their antinodes, a \"standing\" current occurs with a measured speed of up to 11 km/h. We presented a hypothesis about the possibility of stimulating natural oscillations of water bodies by a standing current, which changes its direction due to the movement of the water surface from the trough of the wave to its crest, and back. A model of stimulating oscillations by the waves with a constant period and currents with constant and variable speeds has been developed.</p></div>","PeriodicalId":54694,"journal":{"name":"Oceanologia","volume":"65 4","pages":"Pages 564-570"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oceanologia","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0078323423000647","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

The statistics suggest that extreme waves cause more damage in shallow waters and at the coast than in the deep sea. In the linear theory of the formation of extreme waves, their existence is interpreted as a local superposition of surface monochromatic waves. The event of excitation of extreme waves can be understood as an increase in natural oscillations of the water basin. The conditions for the excitation and sustaining of natural oscillations are the proximity of the periods of exciting traveling waves to the period of traveling waves and the speed of movement of the exciting current to the phase speed of propagation of traveling waves of the reservoir. Examples of stimulating natural oscillations are presented. We determined the range of expected periods of natural oscillations, which range from 30 seconds to 24 hours. Synchronously and in common-mode with the oscillations of standing waves between their antinodes, a "standing" current occurs with a measured speed of up to 11 km/h. We presented a hypothesis about the possibility of stimulating natural oscillations of water bodies by a standing current, which changes its direction due to the movement of the water surface from the trough of the wave to its crest, and back. A model of stimulating oscillations by the waves with a constant period and currents with constant and variable speeds has been developed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
常流对极值波的激发
统计数据表明,极端海浪对浅水和海岸造成的破坏比深海更大。在极值波形成的线性理论中,极值波的存在被解释为表面单色波的局部叠加。极值波的激发事件可以理解为盆地自然振荡的增加。激发和维持自然振荡的条件是激励行波的周期与行波的周期接近,激励电流的运动速度与水库行波传播的相速度接近。给出了刺激自然振荡的实例。我们确定了自然振荡的预期周期范围,范围从30秒到24小时。与驻点之间的驻波同步共模振荡,“驻波”电流以高达11公里/小时的测量速度发生。我们提出了一种假设,即通过驻流刺激水体自然振荡的可能性,驻流由于水面从波谷到波峰再返回的运动而改变其方向。提出了一种由恒周期波浪和恒速和变速流刺激振荡的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Oceanologia
Oceanologia 地学-海洋学
CiteScore
5.30
自引率
6.90%
发文量
63
审稿时长
146 days
期刊介绍: Oceanologia is an international journal that publishes results of original research in the field of marine sciences with emphasis on the European seas.
期刊最新文献
Editorial Board Long-term statistics of atmospheric conditions over the Baltic Sea and meteorological features related to wind wave extremes in the Gulf of Gdańsk Fluctuations of ice in a lake due to the impact of the North Atlantic Oscillation (1960/61–2009/10) – a case study of Łebsko Lake Cooperation between the fishery sector and science: CTD probe measurements during fishing catches on the feeding grounds of herring (Culpea harengus) and sprat (Sprattus sprattus) in the south-eastern part of the Baltic Sea Seasonal enhancement of phytoplankton biomass in the southern tropical Indian Ocean: Significance of meteorological and oceanography parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1