{"title":"Highly conservative Allen–Cahn-type multi-phase-field model and evaluation of its accuracy","authors":"Shintaro Aihara, Naoki Takada, Tomohiro Takaki","doi":"10.1007/s00162-023-00655-0","DOIUrl":null,"url":null,"abstract":"<p>In the engineering field, it is necessary to construct a numerical model that can reproduce multiphase flows containing three or more phases with high accuracy. In our previous study, by extending the conservative Allen–Cahn (CAC) model, which is computationally considerably more efficient than the conventional Cahn–Hilliard (CH) model, to the multiphase flow problem with three or more phases, we developed the conservative Allen–Cahn type multi-phase-field (CAC–MPF) model. In this study, we newly construct the improved CAC–MPF model by modifying the Lagrange multiplier term of the previous CAC–MPF model to a conservative form. The accuracy of the improved CAC–MPF model is evaluated through a comparison of five models: three CAC–MPF models and two CH–MPF models. The results indicate that the improved CAC–MPF model can accurately and efficiently perform simulations of multiphase flows with three or more phases while maintaining the same level of volume conservation as the CH model. We expect that the improved CAC–MPF model will be applied to various engineering problems with multiphase flows with high accuracy.</p>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"37 5","pages":"639 - 659"},"PeriodicalIF":2.2000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Computational Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00162-023-00655-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 2
Abstract
In the engineering field, it is necessary to construct a numerical model that can reproduce multiphase flows containing three or more phases with high accuracy. In our previous study, by extending the conservative Allen–Cahn (CAC) model, which is computationally considerably more efficient than the conventional Cahn–Hilliard (CH) model, to the multiphase flow problem with three or more phases, we developed the conservative Allen–Cahn type multi-phase-field (CAC–MPF) model. In this study, we newly construct the improved CAC–MPF model by modifying the Lagrange multiplier term of the previous CAC–MPF model to a conservative form. The accuracy of the improved CAC–MPF model is evaluated through a comparison of five models: three CAC–MPF models and two CH–MPF models. The results indicate that the improved CAC–MPF model can accurately and efficiently perform simulations of multiphase flows with three or more phases while maintaining the same level of volume conservation as the CH model. We expect that the improved CAC–MPF model will be applied to various engineering problems with multiphase flows with high accuracy.
期刊介绍:
Theoretical and Computational Fluid Dynamics provides a forum for the cross fertilization of ideas, tools and techniques across all disciplines in which fluid flow plays a role. The focus is on aspects of fluid dynamics where theory and computation are used to provide insights and data upon which solid physical understanding is revealed. We seek research papers, invited review articles, brief communications, letters and comments addressing flow phenomena of relevance to aeronautical, geophysical, environmental, material, mechanical and life sciences. Papers of a purely algorithmic, experimental or engineering application nature, and papers without significant new physical insights, are outside the scope of this journal. For computational work, authors are responsible for ensuring that any artifacts of discretization and/or implementation are sufficiently controlled such that the numerical results unambiguously support the conclusions drawn. Where appropriate, and to the extent possible, such papers should either include or reference supporting documentation in the form of verification and validation studies.