首页 > 最新文献

Theoretical and Computational Fluid Dynamics最新文献

英文 中文
A note on the similarity between acoustic streaming and gravity wave drift in irrotational fluid motion
IF 2.2 3区 工程技术 Q2 MECHANICS Pub Date : 2025-04-15 DOI: 10.1007/s00162-025-00743-3
Jan Erik H. Weber

For inviscid irrotational fluid motion, the nonlinear Lagrangian equations for periodic plane acoustic waves and long gravity waves are formally similar. It then follows that the Stokes drift is similar and can be calculated for the two problems. However, the lack of dissipative processes means that the Eulerian mean current cannot be determined, and hence the acoustic streaming velocity and the Lagrangian mean surface-wave drift remain unknown. To remedy this without altering the irrotational character of the fluid motion, we add a small frictional force which is linear in the velocity, or a so-called Rayleigh friction. Then, the Lagrangian mean drift (Stokes drift (+) Eulerian current) is uniquely determined. With this assumption, the acoustic streaming velocity is (left( gamma +1 right) /2) times the Stokes drift in sound waves, where (gamma ) is the adiabatic constant. For long gravity waves, the Lagrangian mean drift is 3/2 times the Stokes drift in surface waves. These results are valid whatever small the Rayleigh friction coefficient is, as long as it is not zero.

{"title":"A note on the similarity between acoustic streaming and gravity wave drift in irrotational fluid motion","authors":"Jan Erik H. Weber","doi":"10.1007/s00162-025-00743-3","DOIUrl":"10.1007/s00162-025-00743-3","url":null,"abstract":"<div><p>For inviscid irrotational fluid motion, the nonlinear Lagrangian equations for periodic plane acoustic waves and long gravity waves are formally similar. It then follows that the Stokes drift is similar and can be calculated for the two problems. However, the lack of dissipative processes means that the Eulerian mean current cannot be determined, and hence the acoustic streaming velocity and the Lagrangian mean surface-wave drift remain unknown. To remedy this without altering the irrotational character of the fluid motion, we add a small frictional force which is linear in the velocity, or a so-called Rayleigh friction. Then, the Lagrangian mean drift (Stokes drift <span>(+)</span> Eulerian current) is uniquely determined. With this assumption, the acoustic streaming velocity is <span>(left( gamma +1 right) /2)</span> times the Stokes drift in sound waves, where <span>(gamma )</span> is the adiabatic constant. For long gravity waves, the Lagrangian mean drift is 3/2 times the Stokes drift in surface waves. These results are valid whatever small the Rayleigh friction coefficient is, as long as it is not zero.</p></div>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"39 3","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00162-025-00743-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143835525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of obstacle length and height in supercritical free-surface flow
IF 2.2 3区 工程技术 Q2 MECHANICS Pub Date : 2025-03-12 DOI: 10.1007/s00162-025-00735-3
Hugh Michalski, Trent Mattner, Sanjeeva Balasuriya, Benjamin Binder

Two-dimensional open channel flow past a rectangular disturbance in the channel bottom is considered in the case of supercritical flow, where the dimensionless flow rate is greater than unity. The response of the free surface to the height and length of a rectangular disturbance is investigated using the forced Korteweg–de Vries model of Michalski et al. (Theor Comput Fluid Dyn 38:511–530, 2024). A rich and complex structure of solutions is found as the length of the disturbance increases, especially in the case of a negative disturbance. As the length of the disturbance is decreased, some solutions approach those of the well-studied point forcing approximation, but there are other solutions, for a negative disturbance, that are not predicted by the point forcing model. The stability of steady solutions is then considered numerically with established pseudospectral methods.

{"title":"The effect of obstacle length and height in supercritical free-surface flow","authors":"Hugh Michalski,&nbsp;Trent Mattner,&nbsp;Sanjeeva Balasuriya,&nbsp;Benjamin Binder","doi":"10.1007/s00162-025-00735-3","DOIUrl":"10.1007/s00162-025-00735-3","url":null,"abstract":"<div><p>Two-dimensional open channel flow past a rectangular disturbance in the channel bottom is considered in the case of supercritical flow, where the dimensionless flow rate is greater than unity. The response of the free surface to the height and length of a rectangular disturbance is investigated using the forced Korteweg–de Vries model of Michalski et al. (Theor Comput Fluid Dyn 38:511–530, 2024). A rich and complex structure of solutions is found as the length of the disturbance increases, especially in the case of a negative disturbance. As the length of the disturbance is decreased, some solutions approach those of the well-studied point forcing approximation, but there are other solutions, for a negative disturbance, that are not predicted by the point forcing model. The stability of steady solutions is then considered numerically with established pseudospectral methods.</p></div>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"39 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00162-025-00735-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143594793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data-driven modeling and control of oscillatory instabilities in Kolmogorov-like flow
IF 2.2 3区 工程技术 Q2 MECHANICS Pub Date : 2025-03-07 DOI: 10.1007/s00162-025-00742-4
Nicholas Conlin, Jeffrey Tithof, Maziar S. Hemati

We apply data-driven techniques to construct a nonlinear 3-mode model of a Kolmogorov-like flow transitioning from steady to periodic. Data from direct numerical simulation that include features of experimental realizations of Kolmogorov-like flow are used to build the model. Our low-order modeling methodology does not require knowledge of the underlying governing equations. The 3-mode basis for the model is determined solely from data and the sparse identification of nonlinear dynamics framework (SINDy) is used to fit a dynamical system describing modal interactions. We impose constraints within the SINDy framework to ensure the resulting model will possess energy-preserving nonlinear terms that are consistent with the underlying flow physics. We use the low-order model to determine an appropriate equilibrium solution to stabilize, thereby avoiding searching for equilibrium solutions in the full-order system. The model is linearized about the identified equilibrium solution and subsequently used to design feedback controllers that successfully suppress an oscillatory instability when applied in direct numerical simulations—a testament to the model’s ability to capture the underlying dynamics that are most relevant for flow control. Our results confirm that low-order models obtained in a purely data-driven framework can be implemented for flow control in experimentally-realizable Kolmogorov-like flow.

{"title":"Data-driven modeling and control of oscillatory instabilities in Kolmogorov-like flow","authors":"Nicholas Conlin,&nbsp;Jeffrey Tithof,&nbsp;Maziar S. Hemati","doi":"10.1007/s00162-025-00742-4","DOIUrl":"10.1007/s00162-025-00742-4","url":null,"abstract":"<div><p>We apply data-driven techniques to construct a nonlinear 3-mode model of a Kolmogorov-like flow transitioning from steady to periodic. Data from direct numerical simulation that include features of experimental realizations of Kolmogorov-like flow are used to build the model. Our low-order modeling methodology does not require knowledge of the underlying governing equations. The 3-mode basis for the model is determined solely from data and the sparse identification of nonlinear dynamics framework (SINDy) is used to fit a dynamical system describing modal interactions. We impose constraints within the SINDy framework to ensure the resulting model will possess energy-preserving nonlinear terms that are consistent with the underlying flow physics. We use the low-order model to determine an appropriate equilibrium solution to stabilize, thereby avoiding searching for equilibrium solutions in the full-order system. The model is linearized about the identified equilibrium solution and subsequently used to design feedback controllers that successfully suppress an oscillatory instability when applied in direct numerical simulations—a testament to the model’s ability to capture the underlying dynamics that are most relevant for flow control. Our results confirm that low-order models obtained in a purely data-driven framework can be implemented for flow control in experimentally-realizable Kolmogorov-like flow.</p></div>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"39 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143571074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonlinear estimation in turbulent channel flows
IF 2.2 3区 工程技术 Q2 MECHANICS Pub Date : 2025-02-23 DOI: 10.1007/s00162-025-00741-5
Jitong Ding, Simon J. Illingworth

We design a nonlinear estimator for channel flows at (Re_{tau }=180) and 590. The nonlinear estimator uses a linear estimator structure based on the linearised Navier–Stokes equations and explicitly calculates the nonlinear forcing from the estimated velocities in physical space. The goal is to use limited velocity measurements to predict the velocity field at other locations. We first use the velocities at one wall-normal height to estimate the velocities at other wall-normal heights. The estimation performance is compared among the nonlinear estimator, the linear estimator and the linear estimator augmented with eddy viscosity. At (Re_{tau }=180), the nonlinear estimator and the linear estimator augmented with eddy viscosity outperform the linear estimator in terms of estimating the velocity magnitudes, structures and energy transfer (production, dissipation and turbulent transport) across the channel height. The limitations of using measurement data at one wall-normal height are discussed. At (Re_{tau }=590), the nonlinear estimator does not work well with only one measurement plane, whereas the linear estimator augmented with eddy viscosity performs well. The performance of the nonlinear estimator and the linear estimator augmented with eddy viscosity at (Re_{tau }=590) is significantly enhanced by providing multiple measurement planes.

{"title":"Nonlinear estimation in turbulent channel flows","authors":"Jitong Ding,&nbsp;Simon J. Illingworth","doi":"10.1007/s00162-025-00741-5","DOIUrl":"10.1007/s00162-025-00741-5","url":null,"abstract":"<div><p>We design a nonlinear estimator for channel flows at <span>(Re_{tau }=180)</span> and 590. The nonlinear estimator uses a linear estimator structure based on the linearised Navier–Stokes equations and explicitly calculates the nonlinear forcing from the estimated velocities in physical space. The goal is to use limited velocity measurements to predict the velocity field at other locations. We first use the velocities at one wall-normal height to estimate the velocities at other wall-normal heights. The estimation performance is compared among the nonlinear estimator, the linear estimator and the linear estimator augmented with eddy viscosity. At <span>(Re_{tau }=180)</span>, the nonlinear estimator and the linear estimator augmented with eddy viscosity outperform the linear estimator in terms of estimating the velocity magnitudes, structures and energy transfer (production, dissipation and turbulent transport) across the channel height. The limitations of using measurement data at one wall-normal height are discussed. At <span>(Re_{tau }=590)</span>, the nonlinear estimator does not work well with only one measurement plane, whereas the linear estimator augmented with eddy viscosity performs well. The performance of the nonlinear estimator and the linear estimator augmented with eddy viscosity at <span>(Re_{tau }=590)</span> is significantly enhanced by providing multiple measurement planes.</p></div>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"39 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00162-025-00741-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143475112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimentally informed, linear mean-field modelling of circular cylinder aeroacoustics
IF 2.2 3区 工程技术 Q2 MECHANICS Pub Date : 2025-02-19 DOI: 10.1007/s00162-025-00739-z
Robin Prinja, Peter Jordan, Florent Margnat

A noise modelling approach is proposed for bluff body wakes such as flow over a cylinder, where the primary noise source comprises large-scale coherent structures such as the vortex shedding flow feature. This phenomenon leads to Aeolian tones in the far-field, and is inherent in wake flows across a range of Reynolds numbers (Re), from low-Re to high-Re turbulent flows. The approach employs linear global stability analysis on the time-averaged mean flow, with amplitude calibration through two-point statistics, and far-field noise calculations from the global mode fluctuations by Curle’s analogy. The overall approach is tested for flow over a cylinder at Reynolds numbers Re = 150 and 13,300. For Re = 150 flow, noise directivity calculations from the present approach agree with direct far-field computations. For Re = 13,300 flow, the mean flow is obtained by particle image velocimetry (PIV). The linear global mode for spanwise-homogeneous-type fluctuations is obtained at the main, lift fluctuation frequency. Calibration of this global mode involves time-resolved PIV data in the streamwise-spanwise plane, which is Fourier transformed in frequency-spanwise wavenumber space. The noise calculations for this global mode are then found to be less than 1 dB off from the microphone measurements.

{"title":"Experimentally informed, linear mean-field modelling of circular cylinder aeroacoustics","authors":"Robin Prinja,&nbsp;Peter Jordan,&nbsp;Florent Margnat","doi":"10.1007/s00162-025-00739-z","DOIUrl":"10.1007/s00162-025-00739-z","url":null,"abstract":"<div><p>A noise modelling approach is proposed for bluff body wakes such as flow over a cylinder, where the primary noise source comprises large-scale coherent structures such as the vortex shedding flow feature. This phenomenon leads to Aeolian tones in the far-field, and is inherent in wake flows across a range of Reynolds numbers (Re), from low-Re to high-Re turbulent flows. The approach employs linear global stability analysis on the time-averaged mean flow, with amplitude calibration through two-point statistics, and far-field noise calculations from the global mode fluctuations by Curle’s analogy. The overall approach is tested for flow over a cylinder at Reynolds numbers Re = 150 and 13,300. For Re = 150 flow, noise directivity calculations from the present approach agree with direct far-field computations. For Re = 13,300 flow, the mean flow is obtained by particle image velocimetry (PIV). The linear global mode for spanwise-homogeneous-type fluctuations is obtained at the main, lift fluctuation frequency. Calibration of this global mode involves time-resolved PIV data in the streamwise-spanwise plane, which is Fourier transformed in frequency-spanwise wavenumber space. The noise calculations for this global mode are then found to be less than 1 dB off from the microphone measurements.</p></div>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"39 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143446515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Porous plates at incidence
IF 2.2 3区 工程技术 Q2 MECHANICS Pub Date : 2025-02-12 DOI: 10.1007/s00162-025-00740-6
Chandan Bose, Callum Bruce, Ignazio Maria Viola

This paper investigates the effect of permeability on two-dimensional rectangular plates at incidences. The flow topology is investigated for Reynolds number (Re) values between 30 and 90, and the forces on the plate are discussed for (Re=30), where the wake is found to be steady for any value of the Darcy number (Da) and the flow incidence ((alpha )). At (Re=30), for a plate normal to the stream and vanishing Da, the wake shows a vortex dipole with a stagnation point on the plate surface. With increasing Da, the separation between the vortex dipole and the plate increases; the vortex dipole shortens and is eventually annihilated at a critical Da. For any value of Da below the critical one, the vortex dipole disappears with decreasing (alpha ). However, at low Da, the two saddle-node pairs merge at the same (alpha ), annihilating the dipole; while at high Da, they merge at different (alpha ), resulting in a single recirculating region for intermediate incidences. The magnitudes of lift, drag, and torque decrease with Da. Nevertheless, there exists a range of Da and (alpha ), where the magnitude of the plate-wise force component increases with Da, driven by the shear on the plate’s pressure side. Finally, the analysis of the fluid impulse suggests that the lift and drag reduction with Da are associated with the weakening of the leading and trailing edge shear layer, respectively. The present findings will be directly beneficial in understanding the role of permeability on small permeable bodies.

{"title":"Porous plates at incidence","authors":"Chandan Bose,&nbsp;Callum Bruce,&nbsp;Ignazio Maria Viola","doi":"10.1007/s00162-025-00740-6","DOIUrl":"10.1007/s00162-025-00740-6","url":null,"abstract":"<div><p>This paper investigates the effect of permeability on two-dimensional rectangular plates at incidences. The flow topology is investigated for Reynolds number (<i>Re</i>) values between 30 and 90, and the forces on the plate are discussed for <span>(Re=30)</span>, where the wake is found to be steady for any value of the Darcy number (<i>Da</i>) and the flow incidence (<span>(alpha )</span>). At <span>(Re=30)</span>, for a plate normal to the stream and vanishing <i>Da</i>, the wake shows a vortex dipole with a stagnation point on the plate surface. With increasing <i>Da</i>, the separation between the vortex dipole and the plate increases; the vortex dipole shortens and is eventually annihilated at a critical <i>Da</i>. For any value of <i>Da</i> below the critical one, the vortex dipole disappears with decreasing <span>(alpha )</span>. However, at low <i>Da</i>, the two saddle-node pairs merge at the same <span>(alpha )</span>, annihilating the dipole; while at high <i>Da</i>, they merge at different <span>(alpha )</span>, resulting in a single recirculating region for intermediate incidences. The magnitudes of lift, drag, and torque decrease with <i>Da</i>. Nevertheless, there exists a range of <i>Da</i> and <span>(alpha )</span>, where the magnitude of the plate-wise force component increases with <i>Da</i>, driven by the shear on the plate’s pressure side. Finally, the analysis of the fluid impulse suggests that the lift and drag reduction with <i>Da</i> are associated with the weakening of the leading and trailing edge shear layer, respectively. The present findings will be directly beneficial in understanding the role of permeability on small permeable bodies.</p></div>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"39 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00162-025-00740-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143388771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance investigations of the two-phase mixer for liquid metal magnetohydrodynamic generator
IF 2.2 3区 工程技术 Q2 MECHANICS Pub Date : 2025-02-08 DOI: 10.1007/s00162-025-00738-0
Shaozheng Wang, Zhongtian Liu, Hulin Huang, Peng Lu

To efficiently utilize gas driving liquid metal for two-phase magnetohydrodynamic power generatior, a double-nozzle venturi mixer was proposed and the impact of mixer key dimensions, applied magnetic field and load factor on the mixing characteristics and power generation performance were investigated by adopting the VOF (volume of fluid) method in this paper. The results show that the velocity of liquid metal is greatly increased by the high-pressure gas in the mixer and the two-phase churn flow regime with lower two-phase slip ratio and higher uniformity, which represents a better mixing effect, can be found in the mixer with the smaller ratio of nozzle area to gas inlet area ((S_{textrm{n}}/S_{textrm{g}})) and the larger ratio of mixing chamber area to total inlet area ((S_{textrm{m}}/S_{textrm{i}})). In the range of this study, the output current, output power, and power generation efficiency of the LMMHD generator reach the maximum as (S_{textrm{n}}/S_{textrm{g}}=0.040) and (S_{textrm{m}}/S_{textrm{i}}=0.144). When the magnetic field is small, appropriately increasing it not only enhances the volume fraction of liquid metal in the power generation channel, but also upgrades the two-phase uniformity, which are beneficial to improve the output power (P_{textrm{wo}}) and power generation efficiency (eta ). However, the bigger magnetic field also leads to the uprising of two-phase slip ratio that makes the power generation performance be deteriorated.

{"title":"Performance investigations of the two-phase mixer for liquid metal magnetohydrodynamic generator","authors":"Shaozheng Wang,&nbsp;Zhongtian Liu,&nbsp;Hulin Huang,&nbsp;Peng Lu","doi":"10.1007/s00162-025-00738-0","DOIUrl":"10.1007/s00162-025-00738-0","url":null,"abstract":"<p>To efficiently utilize gas driving liquid metal for two-phase magnetohydrodynamic power generatior, a double-nozzle venturi mixer was proposed and the impact of mixer key dimensions, applied magnetic field and load factor on the mixing characteristics and power generation performance were investigated by adopting the VOF (volume of fluid) method in this paper. The results show that the velocity of liquid metal is greatly increased by the high-pressure gas in the mixer and the two-phase churn flow regime with lower two-phase slip ratio and higher uniformity, which represents a better mixing effect, can be found in the mixer with the smaller ratio of nozzle area to gas inlet area (<span>(S_{textrm{n}}/S_{textrm{g}}))</span> and the larger ratio of mixing chamber area to total inlet area (<span>(S_{textrm{m}}/S_{textrm{i}}))</span>. In the range of this study, the output current, output power, and power generation efficiency of the LMMHD generator reach the maximum as <span>(S_{textrm{n}}/S_{textrm{g}}=0.040)</span> and <span>(S_{textrm{m}}/S_{textrm{i}}=0.144)</span>. When the magnetic field is small, appropriately increasing it not only enhances the volume fraction of liquid metal in the power generation channel, but also upgrades the two-phase uniformity, which are beneficial to improve the output power <span>(P_{textrm{wo}})</span> and power generation efficiency <span>(eta )</span>. However, the bigger magnetic field also leads to the uprising of two-phase slip ratio that makes the power generation performance be deteriorated.</p>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"39 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143361672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Active learning of data-assimilation closures using graph neural networks 基于图神经网络的数据同化闭包主动学习
IF 2.2 3区 工程技术 Q2 MECHANICS Pub Date : 2025-01-14 DOI: 10.1007/s00162-025-00737-1
Michele Quattromini, Michele Alessandro Bucci, Stefania Cherubini, Onofrio Semeraro

The spread of machine learning techniques coupled with the availability of high-quality experimental and numerical data has significantly advanced numerous applications in fluid mechanics. Notable among these are the development of data assimilation and closure models for unsteady and turbulent flows employing neural networks (NN). Despite their widespread use, these methods often suffer from overfitting and typically require extensive datasets, particularly when not incorporating physical constraints. This becomes compelling in the context of numerical simulations, where, given the high computational costs, it is crucial to establish learning procedures that are effective even with a limited dataset. Here, we tackle those limitations by developing NN models capable of generalizing over unseen data in low-data limit by: (i) incorporating invariances into the NN model using a Graph Neural Networks (GNNs) architecture; and (ii) devising an adaptive strategy for the selection of the data utilized in the learning process. GNNs are particularly well-suited for numerical simulations involving unstructured domain discretization and we demonstrate their use by interfacing them with a Finite Elements (FEM) solver for the supervised learning of Reynolds-averaged Navier–Stokes equations. We consider as a test-case the data-assimilation of meanflows past generic bluff bodies, at different Reynolds numbers (50 le Re le 150), characterized by an unsteady dynamics. We show that the GNN models successfully predict the closure term; remarkably, these performances are achieved using a very limited dataset selected through an active learning process ensuring the generalization properties of the RANS closure term. The results suggest that GNN models trained through active learning procedures are a valid alternative to less flexible techniques such as convolutional NN.

机器学习技术的普及,加上高质量实验和数值数据的可用性,极大地推进了流体力学中的许多应用。其中值得注意的是采用神经网络(NN)的非定常和湍流的数据同化和闭合模型的发展。尽管这些方法被广泛使用,但它们往往存在过拟合的问题,并且通常需要大量的数据集,特别是在不考虑物理限制的情况下。这在数值模拟的背景下变得引人注目,其中,考虑到高计算成本,建立即使在有限的数据集上也有效的学习过程至关重要。在这里,我们通过开发能够在低数据限制下对不可见数据进行泛化的神经网络模型来解决这些限制:(i)使用图神经网络(GNNs)架构将不变性纳入神经网络模型;(ii)设计一种自适应策略,用于选择学习过程中使用的数据。gnn特别适合于涉及非结构化域离散化的数值模拟,我们通过将它们与用于雷诺平均Navier-Stokes方程监督学习的有限元求解器相结合来演示它们的使用。我们考虑作为一个测试案例的平均流的数据同化通过一般钝体,在不同的雷诺数(50 le Re le 150),其特点是一个非定常动力学。我们证明了GNN模型成功地预测了闭合项;值得注意的是,这些性能是使用通过主动学习过程选择的非常有限的数据集实现的,确保了RANS闭包项的泛化特性。结果表明,通过主动学习过程训练的GNN模型是卷积神经网络等不太灵活的技术的有效替代方案。
{"title":"Active learning of data-assimilation closures using graph neural networks","authors":"Michele Quattromini,&nbsp;Michele Alessandro Bucci,&nbsp;Stefania Cherubini,&nbsp;Onofrio Semeraro","doi":"10.1007/s00162-025-00737-1","DOIUrl":"10.1007/s00162-025-00737-1","url":null,"abstract":"<div><p>The spread of machine learning techniques coupled with the availability of high-quality experimental and numerical data has significantly advanced numerous applications in fluid mechanics. Notable among these are the development of data assimilation and closure models for unsteady and turbulent flows employing neural networks (NN). Despite their widespread use, these methods often suffer from overfitting and typically require extensive datasets, particularly when not incorporating physical constraints. This becomes compelling in the context of numerical simulations, where, given the high computational costs, it is crucial to establish learning procedures that are effective even with a limited dataset. Here, we tackle those limitations by developing NN models capable of generalizing over unseen data in low-data limit by: (i) incorporating invariances into the NN model using a Graph Neural Networks (GNNs) architecture; and (ii) devising an adaptive strategy for the selection of the data utilized in the learning process. GNNs are particularly well-suited for numerical simulations involving unstructured domain discretization and we demonstrate their use by interfacing them with a Finite Elements (FEM) solver for the supervised learning of Reynolds-averaged Navier–Stokes equations. We consider as a test-case the data-assimilation of meanflows past generic bluff bodies, at different Reynolds numbers <span>(50 le Re le 150)</span>, characterized by an unsteady dynamics. We show that the GNN models successfully predict the closure term; remarkably, these performances are achieved using a very limited dataset selected through an active learning process ensuring the generalization properties of the RANS closure term. The results suggest that GNN models trained through active learning procedures are a valid alternative to less flexible techniques such as convolutional NN. \u0000</p></div>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"39 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simple shape model for normal shock trains in straight channels 直道中正常激波列的简单形状模型
IF 2.2 3区 工程技术 Q2 MECHANICS Pub Date : 2025-01-13 DOI: 10.1007/s00162-025-00736-2
Fangyou Yu, Tinglong Huang, Hao Chen, Qifan Zhang, Lianjie Yue

Normal shock trains are a flow phenomenon of significance to ramjet engines, but it remains unclear what its structure is decided by and how it evolves with the incoming Mach number. To seek a theoretical explanation, the minimum entropy production principle is generalized to the quasi-steady behavior of normal shock trains in two-dimensional straight channels with uniform incoming flow. Numerical simulations are also performed to validate the model together with the data collected from public literature. The analysis suggests that the flow parameters of a normal shock train depend on the inviscid shock-shock interactions rather than the local boundary-layer separations, though the angles of two incident shocks should still be equal as similar to the case that complies with the free-interaction theory. The shock feet’s positions, meanwhile, are allowed to be coincident or not, free from the entropy restriction. This freedom of position explains why both symmetric and partially asymmetric normal shock trains could be found previously. Further theoretical calculations reveal the inclinations of two incident shocks increase first and then decrease with the incoming Mach number, peaking at 48.570 degrees when the Mach number reaches 1.753. It is also indicated that the Mach number range allowing for a normal shock train is 1.652 to 2.254, giving evidence for past observations.

正常的激波列车是一种对冲压发动机具有重要意义的流动现象,但目前尚不清楚它的结构是由什么决定的,以及它如何随着到来的马赫数而演变。为了寻求理论解释,将最小熵产生原理推广到二维均匀流直通道中正常激波序列的准稳态行为。并结合文献资料进行了数值模拟,验证了模型的有效性。分析表明,正常激波序列的流动参数取决于无粘激波相互作用,而不是局部边界层分离,尽管两个入射激波的角度仍然应该相等,符合自由相互作用理论。同时,冲击脚的位置可以是重合的,也可以是不重合的,不受熵的限制。这种位置的自由解释了为什么以前可以发现对称和部分不对称的正常冲击序列。进一步的理论计算表明,随着来流马赫数的增加,两个入射激波的倾斜度先增大后减小,在马赫数达到1.753时达到48.570度的峰值。还指出,允许正常激波列车的马赫数范围为1.652至2.254,为过去的观测提供了证据。
{"title":"Simple shape model for normal shock trains in straight channels","authors":"Fangyou Yu,&nbsp;Tinglong Huang,&nbsp;Hao Chen,&nbsp;Qifan Zhang,&nbsp;Lianjie Yue","doi":"10.1007/s00162-025-00736-2","DOIUrl":"10.1007/s00162-025-00736-2","url":null,"abstract":"<div><p>Normal shock trains are a flow phenomenon of significance to ramjet engines, but it remains unclear what its structure is decided by and how it evolves with the incoming Mach number. To seek a theoretical explanation, the minimum entropy production principle is generalized to the quasi-steady behavior of normal shock trains in two-dimensional straight channels with uniform incoming flow. Numerical simulations are also performed to validate the model together with the data collected from public literature. The analysis suggests that the flow parameters of a normal shock train depend on the inviscid shock-shock interactions rather than the local boundary-layer separations, though the angles of two incident shocks should still be equal as similar to the case that complies with the free-interaction theory. The shock feet’s positions, meanwhile, are allowed to be coincident or not, free from the entropy restriction. This freedom of position explains why both symmetric and partially asymmetric normal shock trains could be found previously. Further theoretical calculations reveal the inclinations of two incident shocks increase first and then decrease with the incoming Mach number, peaking at 48.570 degrees when the Mach number reaches 1.753. It is also indicated that the Mach number range allowing for a normal shock train is 1.652 to 2.254, giving evidence for past observations.</p></div>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"39 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A numerical procedure to study the stability of helical vortices 研究螺旋涡稳定性的数值方法
IF 2.2 3区 工程技术 Q2 MECHANICS Pub Date : 2024-12-27 DOI: 10.1007/s00162-024-00734-w
Yonghui Xu, Ivan Delbende, Yuji Hattori, Maurice Rossi

A numerical approach is proposed for the study of instabilities in helical vortex systems as found in the near-wake of turbines or propellers. The methodology has a high degree of generality, yet the present paper focusses on the case of one unique helical vortex. First, a method based on helical symmetry aimed at computing a three-dimensional base flow with prescribed parameters—helical pitch, helical radius, vortex circulation, core size and inner jet component—is presented. Second, the linear instability of this base flow is examined by reducing the three-dimensional instability problem to two-dimensional simulations with wavenumbers prescribed along the helix axis. Each simulation converges towards an exponentially growing or decaying complex state from which eigenfunctions, growth rate and frequency are extracted. This procedure is validated against a standard method based on direct three-dimensional numerical simulations of the Navier–Stokes equations linearized in the vicinity of the same helical base flows. Three illustrative base flows are presented with or without inner jet component, the instability of which is dominated, at the prescribed axial wavenumber, by unstable modes of three different types: long-wave instability, short-wave elliptic and curvature instabilities. Results from the new procedure and from the fully three-dimensional one are found in excellent agreement, which validates the new methodology. The gain in computational time is typically the one that is achieved while going from three-dimensional to two-dimensional simulations.

本文提出了一种数值方法来研究涡轮或螺旋桨近尾迹中螺旋涡系统的不稳定性。该方法具有高度的通用性,但本文的重点是一个独特的螺旋涡的情况。首先,提出了一种基于螺旋对称的计算三维基流的方法,该方法具有螺旋节距、螺旋半径、涡旋循环、核心尺寸和内射流分量等参数。其次,通过将三维不稳定性问题简化为沿螺旋轴规定波数的二维模拟,研究了基流的线性不稳定性。每个模拟都收敛于指数增长或衰减的复状态,从中提取特征函数、增长率和频率。通过对相同螺旋基流附近线性化的Navier-Stokes方程的直接三维数值模拟,验证了该方法的有效性。给出了三种具有或不具有内喷流成分的基流,在规定的轴向波数下,基流的不稳定性主要由三种不同类型的不稳定模式:长波不稳定、短波椭圆不稳定和曲率不稳定。新程序的结果与全三维程序的结果非常吻合,证明了新方法的有效性。计算时间的增加通常是在从三维模拟到二维模拟时实现的。
{"title":"A numerical procedure to study the stability of helical vortices","authors":"Yonghui Xu,&nbsp;Ivan Delbende,&nbsp;Yuji Hattori,&nbsp;Maurice Rossi","doi":"10.1007/s00162-024-00734-w","DOIUrl":"10.1007/s00162-024-00734-w","url":null,"abstract":"<div><p>A numerical approach is proposed for the study of instabilities in helical vortex systems as found in the near-wake of turbines or propellers. The methodology has a high degree of generality, yet the present paper focusses on the case of one unique helical vortex. First, a method based on helical symmetry aimed at computing a three-dimensional base flow with prescribed parameters—helical pitch, helical radius, vortex circulation, core size and inner jet component—is presented. Second, the linear instability of this base flow is examined by reducing the three-dimensional instability problem to two-dimensional simulations with wavenumbers prescribed along the helix axis. Each simulation converges towards an exponentially growing or decaying complex state from which eigenfunctions, growth rate and frequency are extracted. This procedure is validated against a standard method based on direct three-dimensional numerical simulations of the Navier–Stokes equations linearized in the vicinity of the same helical base flows. Three illustrative base flows are presented with or without inner jet component, the instability of which is dominated, at the prescribed axial wavenumber, by unstable modes of three different types: long-wave instability, short-wave elliptic and curvature instabilities. Results from the new procedure and from the fully three-dimensional one are found in excellent agreement, which validates the new methodology. The gain in computational time is typically the one that is achieved while going from three-dimensional to two-dimensional simulations.</p></div>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"39 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142890413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Theoretical and Computational Fluid Dynamics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1