An updated assessment of the effect of control options to reduce Campylobacter concentrations in broiler caeca on human health risk in the European Union
Maarten Nauta , Declan Bolton , Matteo Crotta , Johanne Ellis-Iversen , Thomas Alter , Michaela Hempen , Winy Messens , Marianne Chemaly
{"title":"An updated assessment of the effect of control options to reduce Campylobacter concentrations in broiler caeca on human health risk in the European Union","authors":"Maarten Nauta , Declan Bolton , Matteo Crotta , Johanne Ellis-Iversen , Thomas Alter , Michaela Hempen , Winy Messens , Marianne Chemaly","doi":"10.1016/j.mran.2021.100197","DOIUrl":null,"url":null,"abstract":"<div><p>Quantitative microbiological risk assessment (QMRA) studies have suggested that control options to reduce the concentration of <em>Campylobacter</em> spp. in broiler chicken caeca may be highly effective at reducing the risk of human campylobacteriosis. These QMRA studies have been updated based on scientific evidence obtained in the past decade. The relationship between <em>Campylobacter</em> concentrations in the caeca and on broiler skins after industrial processing was modelled by means of linear regression and combined with a number of consumer phase models (CPM) and dose-response (DR) models. The reduction of caecal <em>Campylobacter</em> concentration as reported for selected feed additives and vaccines, was used to estimate the relative risk reduction expressed as the percentage decrease in human campylobacteriosis cases in the EU associated with consumption of broiler meat. The model outputs suggest that the effectiveness of these control options are less pronounced than previously indicated. For example, the median estimate for the relative risk reduction obtained through a 2 log<sub>10</sub> reduction in caecal concentrations was 39% (95% CI 9–73%), whereas previous estimates were between 76 and 98%. The main reason for this finding is that recent studies show lower values for the slope of the regression line; the impact of using newly published DR models and CPMs is smaller. Still, the uncertainty associated to the estimated effects is large, mainly due to uncertainty about the slope of the regression line. Additionally, data on the effectiveness of vaccination and the application of feed and water additives obtained under field conditions are scarce, but they are a prerequisite to assess the risk reduction that may be achieved by these control options when applied in practice.</p></div>","PeriodicalId":48593,"journal":{"name":"Microbial Risk Analysis","volume":"21 ","pages":"Article 100197"},"PeriodicalIF":3.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Risk Analysis","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352352221000396","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 3
Abstract
Quantitative microbiological risk assessment (QMRA) studies have suggested that control options to reduce the concentration of Campylobacter spp. in broiler chicken caeca may be highly effective at reducing the risk of human campylobacteriosis. These QMRA studies have been updated based on scientific evidence obtained in the past decade. The relationship between Campylobacter concentrations in the caeca and on broiler skins after industrial processing was modelled by means of linear regression and combined with a number of consumer phase models (CPM) and dose-response (DR) models. The reduction of caecal Campylobacter concentration as reported for selected feed additives and vaccines, was used to estimate the relative risk reduction expressed as the percentage decrease in human campylobacteriosis cases in the EU associated with consumption of broiler meat. The model outputs suggest that the effectiveness of these control options are less pronounced than previously indicated. For example, the median estimate for the relative risk reduction obtained through a 2 log10 reduction in caecal concentrations was 39% (95% CI 9–73%), whereas previous estimates were between 76 and 98%. The main reason for this finding is that recent studies show lower values for the slope of the regression line; the impact of using newly published DR models and CPMs is smaller. Still, the uncertainty associated to the estimated effects is large, mainly due to uncertainty about the slope of the regression line. Additionally, data on the effectiveness of vaccination and the application of feed and water additives obtained under field conditions are scarce, but they are a prerequisite to assess the risk reduction that may be achieved by these control options when applied in practice.
期刊介绍:
The journal Microbial Risk Analysis accepts articles dealing with the study of risk analysis applied to microbial hazards. Manuscripts should at least cover any of the components of risk assessment (risk characterization, exposure assessment, etc.), risk management and/or risk communication in any microbiology field (clinical, environmental, food, veterinary, etc.). This journal also accepts article dealing with predictive microbiology, quantitative microbial ecology, mathematical modeling, risk studies applied to microbial ecology, quantitative microbiology for epidemiological studies, statistical methods applied to microbiology, and laws and regulatory policies aimed at lessening the risk of microbial hazards. Work focusing on risk studies of viruses, parasites, microbial toxins, antimicrobial resistant organisms, genetically modified organisms (GMOs), and recombinant DNA products are also acceptable.