Research progress of intrinsic polymer dielectrics with high permittivity

IF 3.8 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IET Nanodielectrics Pub Date : 2023-06-27 DOI:10.1049/nde2.12054
Kaijin Chen, Zunchu Liu, Weiwen Zheng, Siwei Liu, Zhenguo Chi, Jiarui Xu, Yi Zhang
{"title":"Research progress of intrinsic polymer dielectrics with high permittivity","authors":"Kaijin Chen,&nbsp;Zunchu Liu,&nbsp;Weiwen Zheng,&nbsp;Siwei Liu,&nbsp;Zhenguo Chi,&nbsp;Jiarui Xu,&nbsp;Yi Zhang","doi":"10.1049/nde2.12054","DOIUrl":null,"url":null,"abstract":"<p>The high permittivity of polymer dielectrics facilitates their use in the electronics industry. Compared to inorganic ceramics and composites, intrinsic high permittivity polymer dielectrics have the advantages of easy solution processing and better homogeneity. The permittivity of common polymers is generally low, hence it would be worthwhile to explore avenues for augmenting the permittivity of polymer dielectrics via judicious and efficient structural design. The effective strategies used to increase the permittivity of intrinsic polymers encompass elevating local polarisabilities by fortifying electron delocalisation capabilities, exploiting ion pairs to generate atomic clusters with larger dipole moments, amplifying dipole density, augmenting dipole mobility, and so forth. Due to the rigidity and flexibility of the polymer backbone's decisive influence on the dielectric's all-around performance, its selection also requires a total consideration of the requirements of practical applications. This work provides an overview and a brief evaluation of the dominant design strategies and mentions possible future design paradigms for polymer dielectrics.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":"6 4","pages":"182-211"},"PeriodicalIF":3.8000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12054","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Nanodielectrics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nde2.12054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

The high permittivity of polymer dielectrics facilitates their use in the electronics industry. Compared to inorganic ceramics and composites, intrinsic high permittivity polymer dielectrics have the advantages of easy solution processing and better homogeneity. The permittivity of common polymers is generally low, hence it would be worthwhile to explore avenues for augmenting the permittivity of polymer dielectrics via judicious and efficient structural design. The effective strategies used to increase the permittivity of intrinsic polymers encompass elevating local polarisabilities by fortifying electron delocalisation capabilities, exploiting ion pairs to generate atomic clusters with larger dipole moments, amplifying dipole density, augmenting dipole mobility, and so forth. Due to the rigidity and flexibility of the polymer backbone's decisive influence on the dielectric's all-around performance, its selection also requires a total consideration of the requirements of practical applications. This work provides an overview and a brief evaluation of the dominant design strategies and mentions possible future design paradigms for polymer dielectrics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高介电常数聚合物本征介质的研究进展
聚合物电介质的高介电常数有利于它们在电子工业中的应用。与无机陶瓷和复合材料相比,高介电常数聚合物具有易于溶液加工和均匀性好的优点。普通聚合物的介电常数普遍较低,因此,通过合理有效的结构设计来提高聚合物介电常数的途径是值得探索的。提高本征聚合物介电常数的有效策略包括通过增强电子离域能力来提高局部极性,利用离子对产生具有更大偶极矩的原子团簇,放大偶极密度,增加偶极迁移率等。由于聚合物骨架的刚性和柔韧性对电介质的综合性能有决定性的影响,其选择也需要全面考虑实际应用的要求。这项工作提供了一个概述和主要的设计策略的简要评估,并提到可能的未来设计范例的聚合物电介质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Nanodielectrics
IET Nanodielectrics Materials Science-Materials Chemistry
CiteScore
5.60
自引率
3.70%
发文量
7
审稿时长
21 weeks
期刊最新文献
A combined technique for power transformer fault diagnosis based on k-means clustering and support vector machine Improvement in non-linear electrical conductivity of silicone rubber by incorporating zinc oxide fillers and grafting small polar molecules Traditional fault diagnosis methods for mineral oil-immersed power transformer based on dissolved gas analysis: Past, present and future Enhanced thermal conductivity and self-healing property of PUDA/boron nitride micro-sheets composites with a small number of graphene nano-platelets Improving the dielectric properties of polypropylene for metallised film capacitors based on cyclic olefin copolymer blending
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1