Design and Development of a Multi-Sided Tabletop Augmented Reality 3D Display Coupled with Remote 3D Imaging Module

IF 0.7 Q3 ENGINEERING, MULTIDISCIPLINARY Journal of Engineering and Technological Sciences Pub Date : 2022-12-26 DOI:10.5614/j.eng.technol.sci.2022.54.6.6
Muhammad Saad, Shabab Iqbal, Shoaib R. Soomro
{"title":"Design and Development of a Multi-Sided Tabletop Augmented Reality 3D Display Coupled with Remote 3D Imaging Module","authors":"Muhammad Saad, Shabab Iqbal, Shoaib R. Soomro","doi":"10.5614/j.eng.technol.sci.2022.54.6.6","DOIUrl":null,"url":null,"abstract":"This paper proposes a tabletop augmented reality (AR) 3D display paired with a remote 3D image capture setup that can provide three-dimensional AR visualization of remote objects or persons in real-time. The front-side view is presented in stereo-3D format, while the left-side and right-side views are visualized in 2D format. Transparent glass surfaces are used to demonstrate the volumetric 3D augmentation of the captured object. The developed AR display prototype mainly consists of four 40 × 30 cm2 LCD panels, 54% partially reflective glass, an in-house developed housing assembly, and a processing unit. The capture setup consists of four 720p cameras to capture the front-side stereo view and both the left- and right-side views. The real-time remote operation is demonstrated by connecting the display and imaging units through the Internet. Various system characteristics, such as range of viewing angle, stereo crosstalk, polarization perseverance, frame rate, and amount of reflected and transmitted light through partially reflective glass, were examined. The demonstrated system provided 35% optical transparency and less than 4% stereo crosstalk within a viewing angle of ±20 degrees. An average frame rate of 7.5 frames per second was achieved when the resolution per view was 240 × 240 pixels.","PeriodicalId":15689,"journal":{"name":"Journal of Engineering and Technological Sciences","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering and Technological Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/j.eng.technol.sci.2022.54.6.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a tabletop augmented reality (AR) 3D display paired with a remote 3D image capture setup that can provide three-dimensional AR visualization of remote objects or persons in real-time. The front-side view is presented in stereo-3D format, while the left-side and right-side views are visualized in 2D format. Transparent glass surfaces are used to demonstrate the volumetric 3D augmentation of the captured object. The developed AR display prototype mainly consists of four 40 × 30 cm2 LCD panels, 54% partially reflective glass, an in-house developed housing assembly, and a processing unit. The capture setup consists of four 720p cameras to capture the front-side stereo view and both the left- and right-side views. The real-time remote operation is demonstrated by connecting the display and imaging units through the Internet. Various system characteristics, such as range of viewing angle, stereo crosstalk, polarization perseverance, frame rate, and amount of reflected and transmitted light through partially reflective glass, were examined. The demonstrated system provided 35% optical transparency and less than 4% stereo crosstalk within a viewing angle of ±20 degrees. An average frame rate of 7.5 frames per second was achieved when the resolution per view was 240 × 240 pixels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合远程三维成像模块的多面桌面增强现实三维显示器的设计与开发
本文提出了一种桌面增强现实(AR) 3D显示器与远程3D图像捕获设置配对,可以实时提供远程物体或人的三维AR可视化。正面视图以立体- 3d格式呈现,而左右视图以2D格式呈现。透明玻璃表面用于演示捕获对象的体积3D增强。开发的AR显示原型主要由四个40 × 30 cm2的LCD面板,54%的部分反射玻璃,内部开发的外壳组件和处理单元组成。捕捉装置由四个720p摄像头组成,用于捕捉正面立体视图和左右视图。通过Internet将显示单元和成像单元连接起来,实现实时远程操作。研究了各种系统特性,如视角范围、立体串扰、偏振持久性、帧速率以及通过部分反射玻璃的反射光和透射光量。所演示的系统在±20度的视角内提供35%的光学透明度和不到4%的立体串扰。当每个视图的分辨率为240 × 240像素时,平均帧率为7.5帧/秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Engineering and Technological Sciences
Journal of Engineering and Technological Sciences ENGINEERING, MULTIDISCIPLINARY-
CiteScore
2.30
自引率
11.10%
发文量
77
审稿时长
24 weeks
期刊介绍: Journal of Engineering and Technological Sciences welcomes full research articles in the area of Engineering Sciences from the following subject areas: Aerospace Engineering, Biotechnology, Chemical Engineering, Civil Engineering, Electrical Engineering, Engineering Physics, Environmental Engineering, Industrial Engineering, Information Engineering, Mechanical Engineering, Material Science and Engineering, Manufacturing Processes, Microelectronics, Mining Engineering, Petroleum Engineering, and other application of physical, biological, chemical and mathematical sciences in engineering. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.
期刊最新文献
Lessons Learned in Interfacial Tension Prediction Using a Mixture of Sulfonate- and Ethoxylate-based Surfactants in a Waxy Oil-brine System Feature Extraction Evaluation of Various Machine Learning Methods for Finger Movement Classification using Double Myo Armband Thermodynamic Study on Decarbonization of Combined Cycle Power Plant Evaluation of Drainage System of Light Rapid Transport (LRT) Depo – Kelapa Gading – Jakarta City Influence of Opening and Boundary Conditions on the Behavior of Concrete Hollow Block Walls: Experimental Results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1