Experimental Study on the Effect of Sub-Flash Point Fuel Temperature on the Spread Characteristics of Spill Fire

IF 3 3区 农林科学 Q2 ECOLOGY Fire-Switzerland Pub Date : 2023-07-27 DOI:10.3390/fire6080284
C. Ding, Shuangyang Ma, Zijian Yan, Lingfeng He, Yuyao Li, Tingyong Fang, Yan Jiao
{"title":"Experimental Study on the Effect of Sub-Flash Point Fuel Temperature on the Spread Characteristics of Spill Fire","authors":"C. Ding, Shuangyang Ma, Zijian Yan, Lingfeng He, Yuyao Li, Tingyong Fang, Yan Jiao","doi":"10.3390/fire6080284","DOIUrl":null,"url":null,"abstract":"The spill fires caused by liquid fuel leaks greatly threaten the safety of fuel transportation and storage. In this work, the effect of fuel temperature on the spread characteristics of flowing flames was investigated through n-butanol spilling fire experiments. The spill fire spread can be divided into three stages at different temperatures and leakage rates (I) full spread, (II) gradually extinguished spread, and (III) unable to spread. The oscillation of the flame is related to the fuel thickness and the discharge rate. As the discharge rate or temperature increases, the spread mode changes from pulsation to uniform. With an increase in temperature, the surface flow of the flame is reduced, leading to a decrease in both the preheating time and pulsation amplitude. However, the rate of liquid surface detachment from the flame increases with increasing temperature. The view factor of flame spread can be calculated by the solid flame model, and the flame influences the heat radiation spread state with stable phases or peaks. The research findings presented in this paper hold significant implications for the development of fire safety regulations pertaining to fuel leakage fires.","PeriodicalId":36395,"journal":{"name":"Fire-Switzerland","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire-Switzerland","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/fire6080284","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The spill fires caused by liquid fuel leaks greatly threaten the safety of fuel transportation and storage. In this work, the effect of fuel temperature on the spread characteristics of flowing flames was investigated through n-butanol spilling fire experiments. The spill fire spread can be divided into three stages at different temperatures and leakage rates (I) full spread, (II) gradually extinguished spread, and (III) unable to spread. The oscillation of the flame is related to the fuel thickness and the discharge rate. As the discharge rate or temperature increases, the spread mode changes from pulsation to uniform. With an increase in temperature, the surface flow of the flame is reduced, leading to a decrease in both the preheating time and pulsation amplitude. However, the rate of liquid surface detachment from the flame increases with increasing temperature. The view factor of flame spread can be calculated by the solid flame model, and the flame influences the heat radiation spread state with stable phases or peaks. The research findings presented in this paper hold significant implications for the development of fire safety regulations pertaining to fuel leakage fires.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
亚闪点燃料温度对溢出火灾蔓延特性影响的实验研究
液体燃料泄漏引起的泄漏火灾严重威胁着燃料运输和储存的安全。通过正丁醇溢出火灾实验,研究了燃料温度对流动火焰蔓延特性的影响。在不同温度和泄漏速率下,溢火蔓延可分为完全蔓延阶段、逐渐扑灭蔓延阶段和无法蔓延阶段。火焰的振荡与燃料的厚度和放电速率有关。随着放电速率或温度的升高,扩散模式由脉动型向均匀型转变。随着温度的升高,火焰的表面流量减小,导致预热时间和脉动幅度减小。然而,液体表面脱离火焰的速度随着温度的升高而增加。采用固体火焰模型计算火焰传播的可视因子,火焰以稳定的相位或峰值影响热辐射传播状态。本文的研究结果对燃油泄漏火灾的消防安全法规的制定具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fire-Switzerland
Fire-Switzerland Multiple-
CiteScore
3.10
自引率
15.60%
发文量
182
审稿时长
11 weeks
期刊最新文献
Fire Risk of Polyethylene (PE)-Based Foam Blocks Used as Interior Building Materials and Fire Suppression through a Simple Surface Coating: Analysis of Vulnerability, Propagation, and Flame Retardancy Experimental Study on Combustion Behavior of U-Shaped Cables with Different Bending Forms and Angles Evaluation of Air Quality inside Self-Contained Breathing Apparatus Used by Firefighters Summer Compound Drought-Heat Extremes Amplify Fire-Weather Risk and Burned Area beyond Historical Thresholds in Chongqing Region, Subtropical China Identification Methodology for Chemical Warehouses Dealing with Flammable Substances Capable of Causing Firewater Pollution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1