{"title":"Efficiency of the slime mold algorithm for damage detection of large‐scale structures","authors":"Parsa Ghannadi, S. S. Kourehli","doi":"10.1002/tal.1967","DOIUrl":null,"url":null,"abstract":"Optimization‐based methods are increasingly being implemented for structural damage detection problems through the minimization of the objective functions based on vibration data. The adopted optimization algorithm and objective function play an important role in the accurate detection and quantification of damages. Meanwhile, the challenge of long computational time is another aspect of structural damage identification problems, especially upon addressing large‐scale structures. In this paper, recently developed optimization techniques called slime mold algorithm (SMA) and marine predators algorithm (MPA) are applied to damage assessment of large‐scale structures for the first time. The performance of these algorithms is compared with those obtained using other well‐known optimization techniques such as ant lion optimizer (ALO), whale optimization algorithm (WOA), and grasshopper optimization algorithm (GOA). Furthermore, the sensitivity of three objective functions based on modal assurance criterion (MAC), modified total modal assurance criterion (MTMAC), and natural frequency vector assurance criterion (NFVAC) are examined. Two numerical studies, including the 53‐bar planar truss and the Guangzhou New TV tower, and a full‐scale three‐story frame as an experimental investigation are conducted to present a statistical comparison. The overall results show that the combination of SMA and objective function based on MTMAC provides an accurate tool for damage identification. However, improved SMA (ISMA) has been introduced to enhance the capability of standard SMA for damage detection, and especially finite element model updating in the experimental example. Five benchmark functions are also used to evaluate the global optimization capacity of ISMA and SMA. The results show that the ISMA has many benefits in terms of tackling global optimization problems. MPA‐MTMAC can provide promising results compared with ALO‐MTMAC, WOA‐MTMAC, and GOA‐MTMAC. However, excessive computation time is a big drawback for MPA. The overall results confirm the perfection of the objective function based on MTMAC compared with two others based on MAC and NFVAC.","PeriodicalId":49470,"journal":{"name":"Structural Design of Tall and Special Buildings","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Design of Tall and Special Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/tal.1967","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 9
Abstract
Optimization‐based methods are increasingly being implemented for structural damage detection problems through the minimization of the objective functions based on vibration data. The adopted optimization algorithm and objective function play an important role in the accurate detection and quantification of damages. Meanwhile, the challenge of long computational time is another aspect of structural damage identification problems, especially upon addressing large‐scale structures. In this paper, recently developed optimization techniques called slime mold algorithm (SMA) and marine predators algorithm (MPA) are applied to damage assessment of large‐scale structures for the first time. The performance of these algorithms is compared with those obtained using other well‐known optimization techniques such as ant lion optimizer (ALO), whale optimization algorithm (WOA), and grasshopper optimization algorithm (GOA). Furthermore, the sensitivity of three objective functions based on modal assurance criterion (MAC), modified total modal assurance criterion (MTMAC), and natural frequency vector assurance criterion (NFVAC) are examined. Two numerical studies, including the 53‐bar planar truss and the Guangzhou New TV tower, and a full‐scale three‐story frame as an experimental investigation are conducted to present a statistical comparison. The overall results show that the combination of SMA and objective function based on MTMAC provides an accurate tool for damage identification. However, improved SMA (ISMA) has been introduced to enhance the capability of standard SMA for damage detection, and especially finite element model updating in the experimental example. Five benchmark functions are also used to evaluate the global optimization capacity of ISMA and SMA. The results show that the ISMA has many benefits in terms of tackling global optimization problems. MPA‐MTMAC can provide promising results compared with ALO‐MTMAC, WOA‐MTMAC, and GOA‐MTMAC. However, excessive computation time is a big drawback for MPA. The overall results confirm the perfection of the objective function based on MTMAC compared with two others based on MAC and NFVAC.
期刊介绍:
The Structural Design of Tall and Special Buildings provides structural engineers and contractors with a detailed written presentation of innovative structural engineering and construction practices for tall and special buildings. It also presents applied research on new materials or analysis methods that can directly benefit structural engineers involved in the design of tall and special buildings. The editor''s policy is to maintain a reasonable balance between papers from design engineers and from research workers so that the Journal will be useful to both groups. The problems in this field and their solutions are international in character and require a knowledge of several traditional disciplines and the Journal will reflect this.
The main subject of the Journal is the structural design and construction of tall and special buildings. The basic definition of a tall building, in the context of the Journal audience, is a structure that is equal to or greater than 50 meters (165 feet) in height, or 14 stories or greater. A special building is one with unique architectural or structural characteristics.
However, manuscripts dealing with chimneys, water towers, silos, cooling towers, and pools will generally not be considered for review. The journal will present papers on new innovative structural systems, materials and methods of analysis.