Sensitivity of NDVI-Based Spatial Downscaling Technique of Coarse Precipitation to Some Mediterranean Bioclimatic Stages

IF 4 3区 地球科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Geoscience and Remote Sensing Letters Pub Date : 2017-09-01 DOI:10.1109/LGRS.2017.2720166
Hicham Ezzine, A. Bouziane, D. Ouazar, M. Hasnaoui
{"title":"Sensitivity of NDVI-Based Spatial Downscaling Technique of Coarse Precipitation to Some Mediterranean Bioclimatic Stages","authors":"Hicham Ezzine, A. Bouziane, D. Ouazar, M. Hasnaoui","doi":"10.1109/LGRS.2017.2720166","DOIUrl":null,"url":null,"abstract":"This letter attempts to explore the potential sensitivity of the well-known spatial downscaling technique of coarse precipitation data to some bioclimatic stages of the Mediterranean area. For this purpose, first, an open data set covering a period of 15 years, including TRMM3B43, normalized difference vegetation index (NDVI), DEM, and rain gauge station measurements, was prepared. Then the NDVI-based spatial downscaling technique was applied over Morocco without taking account of bioclimatic stages. Second, based on the same data set, the key step of the downscaling approach (regression between TRMM3B43 and NDVI) was analyzed in five bioclimatic stages in order to assess the approach’s sensitivity. This letter demonstrated that the spatial downscaling approach performs well in the subhumid, semiarid, and in the arid bioclimatic stages, to a lesser extent. However, the approach seems to be sensitive and not adapted to the Saharan and humid stages.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"14 1","pages":"1518-1521"},"PeriodicalIF":4.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/LGRS.2017.2720166","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LGRS.2017.2720166","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

This letter attempts to explore the potential sensitivity of the well-known spatial downscaling technique of coarse precipitation data to some bioclimatic stages of the Mediterranean area. For this purpose, first, an open data set covering a period of 15 years, including TRMM3B43, normalized difference vegetation index (NDVI), DEM, and rain gauge station measurements, was prepared. Then the NDVI-based spatial downscaling technique was applied over Morocco without taking account of bioclimatic stages. Second, based on the same data set, the key step of the downscaling approach (regression between TRMM3B43 and NDVI) was analyzed in five bioclimatic stages in order to assess the approach’s sensitivity. This letter demonstrated that the spatial downscaling approach performs well in the subhumid, semiarid, and in the arid bioclimatic stages, to a lesser extent. However, the approach seems to be sensitive and not adapted to the Saharan and humid stages.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于ndvi的粗降水空间降尺度技术对地中海部分生物气候阶段的敏感性
这封信试图探索众所周知的粗降水数据空间降尺度技术对地中海地区某些生物气候阶段的潜在敏感性。为此,首先,准备了一个为期15年的开放数据集,包括TRMM3B43、归一化差异植被指数(NDVI)、DEM和雨量站测量。然后,在不考虑生物气候阶段的情况下,在摩洛哥上空应用了基于NDVI的空间降尺度技术。其次,基于相同的数据集,在五个生物气候阶段分析了缩减方法的关键步骤(TRMM3B43和NDVI之间的回归),以评估该方法的敏感性。这封信表明,空间缩小方法在亚湿润、半干旱和干旱生物气候阶段表现良好,但程度较低。然而,这种方法似乎很敏感,不适合撒哈拉和潮湿的阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Geoscience and Remote Sensing Letters
IEEE Geoscience and Remote Sensing Letters 工程技术-地球化学与地球物理
CiteScore
7.60
自引率
12.50%
发文量
1113
审稿时长
3.4 months
期刊介绍: IEEE Geoscience and Remote Sensing Letters (GRSL) is a monthly publication for short papers (maximum length 5 pages) addressing new ideas and formative concepts in remote sensing as well as important new and timely results and concepts. Papers should relate to the theory, concepts and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space, and the processing, interpretation, and dissemination of this information. The technical content of papers must be both new and significant. Experimental data must be complete and include sufficient description of experimental apparatus, methods, and relevant experimental conditions. GRSL encourages the incorporation of "extended objects" or "multimedia" such as animations to enhance the shorter papers.
期刊最新文献
Target-driven Real-time Geometric Processing Based on VLR Model for LuoJia3-02 Satellite A “Difference In Difference” based method for unsupervised change detection in season-varying images On the Potential of Orbital VHF Sounding Radars to Locate Shallow Aquifers in Arid Areas Using Reflectometry A two-branch neural network for gas-bearing prediction using latent space adaptation for data augmentation-An application for deep carbonate reservoirs AccuLiteFastNet: A Remote Sensing Object Detection Model Combining High Accuracy, Lightweight Design, and Fast Inference Speed
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1