B. Sapkota, Karan Khadayat, B. Aryal, Jyoti Bashyal, S. Jaisi, Niranjan Parajuli
{"title":"LC-HRMS-Based Profiling: Antibacterial and Lipase Inhibitory Activities of Some Medicinal Plants for the Remedy of Obesity","authors":"B. Sapkota, Karan Khadayat, B. Aryal, Jyoti Bashyal, S. Jaisi, Niranjan Parajuli","doi":"10.3390/scipharm90030055","DOIUrl":null,"url":null,"abstract":"Globally, obesity is a serious health concern that causes numerous diseases, including type 2 diabetes, hypertension, cardiovascular diseases, etc. Medicinal plants have been used to aid in weight loss since ancient times. Thus, this research is focused on the exploration of pancreatic lipase inhibitory activity and secondary metabolite profiling of Bergenia ciliata, Mimosa pudica, and Phyllanthus emblica, selected based on an ethnobotanical survey. The lipase inhibition was investigated using 4-nitrophenyl butyrate (p-NPB) as a substrate. To uncover further therapeutic potentials of these medicinal plants, antimicrobial activity and minimum inhibitory concentration (MIC) of the extracts were also determined. The ethyl acetate plant extracts showed higher antimicrobial activity against Staphylococcus aureus, Escherichia coli, Salmonella typhi, and Shigella sonnei. The MIC of ethyl acetate extracts of medicinal plants considered in this study ranges from 1.56 to 6.25 mg/mL. The hexane fraction of Mimosa pudica and Phyllanthus emblica showed a higher lipase inhibitory activity as compared to others, with IC50 values of 0.49 ± 0.02 and 2.45 ± 0.003 mg/mL, respectively. In the case of Bergenia ciliata, the methanolic extract inhibited lipase more effectively than others, with an IC50 value of 1.55 ± 0.02 mg/mL (IC50 value of orlistat was 179.70 ± 3.60 µg/mL). A mass spectrometry analysis of various solvent/solvent partition fractions (extracts) revealed 29 major secondary metabolites. The research offers a multitude of evidence for using medicinal plants as antiobesity and antimicrobial agents.","PeriodicalId":21601,"journal":{"name":"Scientia Pharmaceutica","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Pharmaceutica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/scipharm90030055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 2
Abstract
Globally, obesity is a serious health concern that causes numerous diseases, including type 2 diabetes, hypertension, cardiovascular diseases, etc. Medicinal plants have been used to aid in weight loss since ancient times. Thus, this research is focused on the exploration of pancreatic lipase inhibitory activity and secondary metabolite profiling of Bergenia ciliata, Mimosa pudica, and Phyllanthus emblica, selected based on an ethnobotanical survey. The lipase inhibition was investigated using 4-nitrophenyl butyrate (p-NPB) as a substrate. To uncover further therapeutic potentials of these medicinal plants, antimicrobial activity and minimum inhibitory concentration (MIC) of the extracts were also determined. The ethyl acetate plant extracts showed higher antimicrobial activity against Staphylococcus aureus, Escherichia coli, Salmonella typhi, and Shigella sonnei. The MIC of ethyl acetate extracts of medicinal plants considered in this study ranges from 1.56 to 6.25 mg/mL. The hexane fraction of Mimosa pudica and Phyllanthus emblica showed a higher lipase inhibitory activity as compared to others, with IC50 values of 0.49 ± 0.02 and 2.45 ± 0.003 mg/mL, respectively. In the case of Bergenia ciliata, the methanolic extract inhibited lipase more effectively than others, with an IC50 value of 1.55 ± 0.02 mg/mL (IC50 value of orlistat was 179.70 ± 3.60 µg/mL). A mass spectrometry analysis of various solvent/solvent partition fractions (extracts) revealed 29 major secondary metabolites. The research offers a multitude of evidence for using medicinal plants as antiobesity and antimicrobial agents.