Fermiology of Topological Metals

IF 14.3 1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER Annual Review of Condensed Matter Physics Pub Date : 2022-12-08 DOI:10.1146/annurev-conmatphys-040721-021331
A. Alexandradinata, L. Glazman
{"title":"Fermiology of Topological Metals","authors":"A. Alexandradinata, L. Glazman","doi":"10.1146/annurev-conmatphys-040721-021331","DOIUrl":null,"url":null,"abstract":"The modern scope of fermiology encompasses not just the classical geometry of Fermi surfaces but also the geometry of quantum wave functions over the Fermi surface. This enlarged scope is motivated by the advent of topological metals—metals whose Fermi surfaces are characterized by a robustly nontrivial Berry phase. We review the extent to which topological metals can be diagnosed from magnetic-field-induced quantum oscillations of transport and thermodynamic quantities. A holistic analysis of the oscillatory wave form is proposed, in which different characteristics of the wave form (e.g., phase offset, high-harmonic amplitudes, temperature-dependent frequency) encode different aspects of a topologically nontrivial Fermi surface. Which characteristic to focus on depends on ( a) the orientation of the magnetic field relative to certain crystallographic axes, ( b) the symmetry class of the topological metal, and ( c) the separation of Fermi-surface pockets in quasimomentum k space. Closely proximate pockets arise when (1) spin–split pockets are nearly overlapping due to a weak spin–orbit force or when (2) two pockets touch at an isolated k point, which can be a topological band-touching point or a saddlepoint in the energy-momentum dispersion. The emergence of a pseudospin degree of freedom (in case 1) and the implications of magnetic breakdown (in case 2) are reviewed, with emphasis on new aspects originating from the (nonabelian) Berry connection of the Fermi surface. Future extensions of topofermiology are suggested in the directions of interaction-induced Fermi-liquid instabilities and two-dimensional electron liquids. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 14 is March 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-conmatphys-040721-021331","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 1

Abstract

The modern scope of fermiology encompasses not just the classical geometry of Fermi surfaces but also the geometry of quantum wave functions over the Fermi surface. This enlarged scope is motivated by the advent of topological metals—metals whose Fermi surfaces are characterized by a robustly nontrivial Berry phase. We review the extent to which topological metals can be diagnosed from magnetic-field-induced quantum oscillations of transport and thermodynamic quantities. A holistic analysis of the oscillatory wave form is proposed, in which different characteristics of the wave form (e.g., phase offset, high-harmonic amplitudes, temperature-dependent frequency) encode different aspects of a topologically nontrivial Fermi surface. Which characteristic to focus on depends on ( a) the orientation of the magnetic field relative to certain crystallographic axes, ( b) the symmetry class of the topological metal, and ( c) the separation of Fermi-surface pockets in quasimomentum k space. Closely proximate pockets arise when (1) spin–split pockets are nearly overlapping due to a weak spin–orbit force or when (2) two pockets touch at an isolated k point, which can be a topological band-touching point or a saddlepoint in the energy-momentum dispersion. The emergence of a pseudospin degree of freedom (in case 1) and the implications of magnetic breakdown (in case 2) are reviewed, with emphasis on new aspects originating from the (nonabelian) Berry connection of the Fermi surface. Future extensions of topofermiology are suggested in the directions of interaction-induced Fermi-liquid instabilities and two-dimensional electron liquids. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 14 is March 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
拓扑金属费米学
费米学的现代范围不仅包括费米曲面的经典几何,还包括费米表面上的量子波函数的几何。这种扩大的范围是由拓扑金属的出现所激发的,这些金属的费米表面具有坚固的非平凡的贝里相特征。我们回顾了从磁场诱导的输运量和热力学量的量子振荡中诊断拓扑金属的程度。提出了振荡波形的整体分析,其中波形的不同特征(例如,相位偏移,高谐波振幅,温度相关频率)编码拓扑非平凡费米表面的不同方面。关注哪个特性取决于(a)相对于某些晶体轴的磁场方向,(b)拓扑金属的对称类,以及(c)准动量k空间中费米表面口袋的分离。当(1)自旋分裂口袋由于弱自旋轨道力而几乎重叠或(2)两个口袋在孤立的k点接触时,就会出现紧密邻近的口袋,k点可以是拓扑带接触点或能量-动量色散中的鞍点。回顾了赝自旋自由度的出现(情形1)和磁击穿的含义(情形2),重点介绍了费米表面(非阿贝尔)贝里连接的新方面。在相互作用诱导的费米液体不稳定性和二维电子液体方面,提出了拓扑学未来的扩展方向。预计《凝聚态物理年鉴》第14卷的最终在线出版日期为2023年3月。修订后的估计数请参阅http://www.annualreviews.org/page/journal/pubdates。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual Review of Condensed Matter Physics
Annual Review of Condensed Matter Physics PHYSICS, CONDENSED MATTER-
CiteScore
47.40
自引率
0.90%
发文量
27
期刊介绍: Since its inception in 2010, the Annual Review of Condensed Matter Physics has been chronicling significant advancements in the field and its related subjects. By highlighting recent developments and offering critical evaluations, the journal actively contributes to the ongoing discourse in condensed matter physics. The latest volume of the journal has transitioned from gated access to open access, facilitated by Annual Reviews' Subscribe to Open initiative. Under this program, all articles are now published under a CC BY license, ensuring broader accessibility and dissemination of knowledge.
期刊最新文献
Quantum Liquids: Emergent Higher-Rank Gauge Theory and Fractons Self-Assembly and Transport Phenomena of Colloids: Confinement and Geometrical Effects Human Rights and Science: Biographical Notes Hydrodynamic Electronic Transport Evolution from Bardeen–Cooper–Schrieffer to Bose–Einstein Condensation in Two Dimensions: Crossovers and Topological Quantum Phase Transitions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1