The CLIPS System for 2022 Spoofing-Aware Speaker Verification Challenge

Jucai Lin, Tingwei Chen, Jingbiao Huang, Ruidong Fang, Jun Yin, Yuanping Yin, W. Shi, Wei Huang, Yapeng Mao
{"title":"The CLIPS System for 2022 Spoofing-Aware Speaker Verification Challenge","authors":"Jucai Lin, Tingwei Chen, Jingbiao Huang, Ruidong Fang, Jun Yin, Yuanping Yin, W. Shi, Wei Huang, Yapeng Mao","doi":"10.21437/interspeech.2022-320","DOIUrl":null,"url":null,"abstract":"In this paper, a spoofing-aware speaker verification (SASV) system that integrates the automatic speaker verification (ASV) system and countermeasure (CM) system is developed. Firstly, a modified re-parameterized VGG (ARepVGG) module is utilized to extract high-level representation from the multi-scale feature that learns from the raw waveform though sinc-filters, and then a spectra-temporal graph attention network is used to learn the final decision information whether the audio is spoofed or not. Secondly, a new network that is inspired from the Max-Feature-Map (MFM) layers is constructed to fine-tune the CM system while keeping the ASV system fixed. Our proposed SASV system significantly improves the SASV equal error rate (SASV-EER) from 6.73 % to 1.36 % on the evaluation dataset and 4.85 % to 0.98 % on the development dataset in the 2022 Spoofing-Aware Speaker Verification Challenge(2022 SASV).","PeriodicalId":73500,"journal":{"name":"Interspeech","volume":"1 1","pages":"4367-4370"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interspeech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/interspeech.2022-320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, a spoofing-aware speaker verification (SASV) system that integrates the automatic speaker verification (ASV) system and countermeasure (CM) system is developed. Firstly, a modified re-parameterized VGG (ARepVGG) module is utilized to extract high-level representation from the multi-scale feature that learns from the raw waveform though sinc-filters, and then a spectra-temporal graph attention network is used to learn the final decision information whether the audio is spoofed or not. Secondly, a new network that is inspired from the Max-Feature-Map (MFM) layers is constructed to fine-tune the CM system while keeping the ASV system fixed. Our proposed SASV system significantly improves the SASV equal error rate (SASV-EER) from 6.73 % to 1.36 % on the evaluation dataset and 4.85 % to 0.98 % on the development dataset in the 2022 Spoofing-Aware Speaker Verification Challenge(2022 SASV).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2022年欺骗感知说话人验证挑战赛的CLIPS系统
本文开发了一种集自动说话人验证(ASV)系统和对抗(CM)系统于一体的欺骗感知说话人验证(SASV)系统。首先,利用改进的重参数化VGG (ARepVGG)模块,通过自适应滤波器从原始波形中学习多尺度特征,提取高级表征,然后利用谱时图注意网络学习音频是否被欺骗的最终决策信息。其次,从最大特征映射层(MFM)中得到启发,构建了一个新的网络,在保持ASV系统固定的同时对CM系统进行微调。在2022年欺骗感知说话人验证挑战(2022 SASV)中,我们提出的SASV系统显著提高了SASV等错误率(SASV- eer),在评估数据集中从6.73%提高到1.36%,在开发数据集中从4.85%提高到0.98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contrastive Learning Approach for Assessment of Phonological Precision in Patients with Tongue Cancer Using MRI Data. Segmental and Suprasegmental Speech Foundation Models for Classifying Cognitive Risk Factors: Evaluating Out-of-the-Box Performance. How Does Alignment Error Affect Automated Pronunciation Scoring in Children's Speech? Comparing ambulatory voice measures during daily life with brief laboratory assessments in speakers with and without vocal hyperfunction. YOLO-Stutter: End-to-end Region-Wise Speech Dysfluency Detection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1