Ismael Orozco Medina, Adrián Martínez Bárcenas, Manuel Herrera Fernández
{"title":"Evaluación de la incertidumbre asociada a las proyecciones de precipitación considerando el cambio climático en la cuenca del río Turbio de Guanajuato","authors":"Ismael Orozco Medina, Adrián Martínez Bárcenas, Manuel Herrera Fernández","doi":"10.15174/au.2022.3433","DOIUrl":null,"url":null,"abstract":"El cambio climático es el gran desafío del siglo XXI, cada año se incrementa la frecuencia y la magnitud de los fenómenos meteorológicos. Por lo tanto, resulta de gran importancia pronosticar las variables asociadas a este fenómeno, como la precipitación. Sin embargo, determinar e incorporar la incertidumbre asociada a las proyecciones de variables meteorológicas es un problema que requiere de mayor investigación. Es por ello que este artículo se enfoca a evaluar la incertidumbre a través del método de Monte Carlo, incluyendo las proyecciones de precipitaciones de los modelos de circulación general y el downscaling con redes neuronales artificiales (RNA). Los resultados obtenidos muestran que el downscaling con las RNA reduce significativamente la incertidumbre a las proyecciones de los modelos de circulación general. Se observa también una tendencia a subestimar las precipitaciones en la mayoría de las estaciones y un sesgo en los outputs respecto a la serie histórica.","PeriodicalId":7163,"journal":{"name":"Acta Universitaria","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitaria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15174/au.2022.3433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
El cambio climático es el gran desafío del siglo XXI, cada año se incrementa la frecuencia y la magnitud de los fenómenos meteorológicos. Por lo tanto, resulta de gran importancia pronosticar las variables asociadas a este fenómeno, como la precipitación. Sin embargo, determinar e incorporar la incertidumbre asociada a las proyecciones de variables meteorológicas es un problema que requiere de mayor investigación. Es por ello que este artículo se enfoca a evaluar la incertidumbre a través del método de Monte Carlo, incluyendo las proyecciones de precipitaciones de los modelos de circulación general y el downscaling con redes neuronales artificiales (RNA). Los resultados obtenidos muestran que el downscaling con las RNA reduce significativamente la incertidumbre a las proyecciones de los modelos de circulación general. Se observa también una tendencia a subestimar las precipitaciones en la mayoría de las estaciones y un sesgo en los outputs respecto a la serie histórica.