Sugarcane Mosaic Virus Resistance in the Wisconsin Sweet Corn Diversity Panel

IF 1.2 4区 农林科学 Q3 HORTICULTURE Journal of the American Society for Horticultural Science Pub Date : 2021-10-25 DOI:10.21273/jashs05097-21
Lillian Hislop, Elizabeth Stephanie, P. Flannery, Matheus Baseggio, M. Gore, W. Tracy
{"title":"Sugarcane Mosaic Virus Resistance in the Wisconsin Sweet Corn Diversity Panel","authors":"Lillian Hislop, Elizabeth Stephanie, P. Flannery, Matheus Baseggio, M. Gore, W. Tracy","doi":"10.21273/jashs05097-21","DOIUrl":null,"url":null,"abstract":"Sugarcane mosaic virus [SCMV (Potyvirus sugarcane mosaic virus)] is an ssRNA virus that negatively affects yield in maize (Zea mays) worldwide. Resistance to SCMV is controlled primarily by a single dominant gene (Scm1). The goal of this study was to identify sweet corn (Z. mays) inbreds that demonstrate resistance to SCMV, confirm the presence of genomic regions previously identified in maize associated with resistance, and identify other resistant loci in sweet corn. Eight plants from each of 563 primarily sweet corn inbred lines were tested for SCMV resistance. Plants were inoculated 14 d after planting and observed for signs of infection 24 d after planting. A subset of 420 inbred lines were genotyped using 7504 high-quality genotyping-by-sequencing single-nucleotide polymorphism markers. Population structure of the panel was observed, and a genome-wide association study was conducted to identify loci associated with SCMV resistance. Forty-six of the inbreds were found to be resistant to SCMV 10 d after inoculation. The Scm1 locus was confirmed with the presence of two significant loci on chromosome 6 (P = 2.5 × 10−8 and 1.6 × 10−8), 5 Mb downstream of the Scm1 gene previously located at Chr6: 14194429.14198587 and the surrounding 2.7-Mb presence–absence variation. We did not identify other loci associated with resistance. This research has increased information on publicly available SCMV-resistant germplasm useful to future breeding projects and demonstrated that SCMV resistance in this sweet corn panel is driven by the Scm1 gene.","PeriodicalId":17226,"journal":{"name":"Journal of the American Society for Horticultural Science","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Horticultural Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.21273/jashs05097-21","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Sugarcane mosaic virus [SCMV (Potyvirus sugarcane mosaic virus)] is an ssRNA virus that negatively affects yield in maize (Zea mays) worldwide. Resistance to SCMV is controlled primarily by a single dominant gene (Scm1). The goal of this study was to identify sweet corn (Z. mays) inbreds that demonstrate resistance to SCMV, confirm the presence of genomic regions previously identified in maize associated with resistance, and identify other resistant loci in sweet corn. Eight plants from each of 563 primarily sweet corn inbred lines were tested for SCMV resistance. Plants were inoculated 14 d after planting and observed for signs of infection 24 d after planting. A subset of 420 inbred lines were genotyped using 7504 high-quality genotyping-by-sequencing single-nucleotide polymorphism markers. Population structure of the panel was observed, and a genome-wide association study was conducted to identify loci associated with SCMV resistance. Forty-six of the inbreds were found to be resistant to SCMV 10 d after inoculation. The Scm1 locus was confirmed with the presence of two significant loci on chromosome 6 (P = 2.5 × 10−8 and 1.6 × 10−8), 5 Mb downstream of the Scm1 gene previously located at Chr6: 14194429.14198587 and the surrounding 2.7-Mb presence–absence variation. We did not identify other loci associated with resistance. This research has increased information on publicly available SCMV-resistant germplasm useful to future breeding projects and demonstrated that SCMV resistance in this sweet corn panel is driven by the Scm1 gene.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
威斯康星甜玉米多样性小组的甘蔗花叶病毒抗性
甘蔗花叶病毒[SCMV (Potyvirus Sugarcane mosaic virus)]是一种在世界范围内对玉米(Zea mays)产量产生负面影响的ssRNA病毒。对SCMV的抗性主要由一个显性基因(Scm1)控制。本研究的目的是鉴定对SCMV具有抗性的甜玉米(Z. mays)自交系,确认先前在玉米中发现的与抗性相关的基因组区域的存在,并鉴定甜玉米中的其他抗性位点。对563个主要甜玉米自交系各8个植株进行了SCMV抗性测试。植后14 d接种植株,植后24 d观察侵染迹象。利用7504个高质量单核苷酸多态性标记对420个自交系进行基因分型。观察了该群体的种群结构,并进行了全基因组关联研究,以确定与SCMV抗性相关的位点。46个自交系在接种10 d后发现对SCMV具有抗性。Scm1基因座在6号染色体上存在两个显著位点(P = 2.5 × 10−8和1.6 × 10−8),位于Scm1基因Chr6: 14194429.14198587下游5 Mb,周围2.7 Mb存在-缺失变异。我们没有发现其他与耐药相关的位点。这项研究增加了对未来育种项目有用的可公开获得的抗SCMV种质的信息,并证明该甜玉米组的SCMV抗性是由Scm1基因驱动的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
31
审稿时长
2 months
期刊介绍: The Journal of the American Society for Horticultural Science publishes papers on the results of original research on horticultural plants and their products or directly related research areas. Its prime function is to communicate mission-oriented, fundamental research to other researchers. The journal includes detailed reports of original research results on various aspects of horticultural science and directly related subjects such as: - Biotechnology - Developmental Physiology - Environmental Stress Physiology - Genetics and Breeding - Photosynthesis, Sources-Sink Physiology - Postharvest Biology - Seed Physiology - Postharvest Biology - Seed Physiology - Soil-Plant-Water Relationships - Statistics
期刊最新文献
Arteriovenous fistula creation with VasQTM device: A feasibility study to reveal hemodynamic implications. Far-red Photons Increase Light Capture but Have Lower Photosynthetic Capacity Than Red Photons Miracle Fruit Pulp Transcriptomes Identify Genetic Variants in Support of Discovery Research and Breeding Difference in Kernel Shape and Endocarp Anatomy Promote Dehiscence in Pistachio Endocarp Genetic Diversity of New Almond Accessions from Central Asian and Cold-adapted North American Germplasm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1