Pub Date : 2024-01-01Epub Date: 2022-04-22DOI: 10.1177/11297298221087160
Michela Bozzetto, Luca Soliveri, Sofia Poloni, Paolo Brambilla, Diego Curtò, Giuseppina Carmela Condemi, Pietro Cefalì, Irene Spina, Alessandro Villa, Anna Caroli, Andrea Remuzzi
Background: Arteriovenous fistula (AVF) is the preferred vascular access (VA) for hemodialysis, but it is still affected by high non-maturation and early failure rates due to stenosis development. Increasing evidence suggests that the presence of turbulent-like flow may play a key role, therefore, to stabilize the flow in the venous segment, an external support device (VasQTM) has been designed. The aim of this study was to provide preliminary evidence of VasQTM impact on AVF hemodynamics as compared to AVFs created with conventional surgery.
Methods: In this pilot single-center prospective randomized study six patients were enrolled, three in the VasQ group and three in the control group. Contrast-free magnetic resonance imaging (MRI) scans were acquired at 3 days, 3 months and 1 year after AVF surgery and were used to generate 3D patient-specific models. Computational fluid dynamic (CFD) simulations were performed using pimpleFoam, imposing patient-specific flow waveforms derived from ultrasound (US) examinations at the inlet of the proximal and distal artery, and a traction-free condition at the venous outflow. Morphologic and hemodynamic changes occurring over time were compared between VasQ and control AVFs.
Results: Our MRI protocol provided high-quality images suitable for reliable segmentation and reconstruction of patient-specific 3D models of AVFs at all three timepoints in four out of six patients. The VasQTM device maintained the angle between the artery and the vein almost unchanged over time, with a more stable flow in the AVFs supported by the device. In contrast, one of the AVFs of the control group evolved to an extreme dilatation of the vein and highly disturbed flow, while the other developed a stenosis in the juxta-anastomotic region.
Conclusions: This study demonstrated the feasibility of characterizing the morphological and hemodynamic changes occurring over time in AVFs created using the VasQTM device and provided preliminary evidence of the potential hemodynamic benefits of its use.
{"title":"Arteriovenous fistula creation with VasQ<sup>TM</sup> device: A feasibility study to reveal hemodynamic implications.","authors":"Michela Bozzetto, Luca Soliveri, Sofia Poloni, Paolo Brambilla, Diego Curtò, Giuseppina Carmela Condemi, Pietro Cefalì, Irene Spina, Alessandro Villa, Anna Caroli, Andrea Remuzzi","doi":"10.1177/11297298221087160","DOIUrl":"10.1177/11297298221087160","url":null,"abstract":"<p><strong>Background: </strong>Arteriovenous fistula (AVF) is the preferred vascular access (VA) for hemodialysis, but it is still affected by high non-maturation and early failure rates due to stenosis development. Increasing evidence suggests that the presence of turbulent-like flow may play a key role, therefore, to stabilize the flow in the venous segment, an external support device (VasQ<sup>TM</sup>) has been designed. The aim of this study was to provide preliminary evidence of VasQ<sup>TM</sup> impact on AVF hemodynamics as compared to AVFs created with conventional surgery.</p><p><strong>Methods: </strong>In this pilot single-center prospective randomized study six patients were enrolled, three in the VasQ group and three in the control group. Contrast-free magnetic resonance imaging (MRI) scans were acquired at 3 days, 3 months and 1 year after AVF surgery and were used to generate 3D patient-specific models. Computational fluid dynamic (CFD) simulations were performed using pimpleFoam, imposing patient-specific flow waveforms derived from ultrasound (US) examinations at the inlet of the proximal and distal artery, and a traction-free condition at the venous outflow. Morphologic and hemodynamic changes occurring over time were compared between VasQ and control AVFs.</p><p><strong>Results: </strong>Our MRI protocol provided high-quality images suitable for reliable segmentation and reconstruction of patient-specific 3D models of AVFs at all three timepoints in four out of six patients. The VasQ<sup>TM</sup> device maintained the angle between the artery and the vein almost unchanged over time, with a more stable flow in the AVFs supported by the device. In contrast, one of the AVFs of the control group evolved to an extreme dilatation of the vein and highly disturbed flow, while the other developed a stenosis in the juxta-anastomotic region.</p><p><strong>Conclusions: </strong>This study demonstrated the feasibility of characterizing the morphological and hemodynamic changes occurring over time in AVFs created using the VasQ<sup>TM</sup> device and provided preliminary evidence of the potential hemodynamic benefits of its use.</p>","PeriodicalId":17226,"journal":{"name":"Journal of the American Society for Horticultural Science","volume":"117 1","pages":"60-70"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10845834/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89856719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Far-red photons (700–750 nm) can accelerate crop growth during indoor production through both physiological and morphological processes. A previous study showed that far-red photons can drive photosynthesis with efficiency similar to that of traditionally defined photosynthetically active photons (400–700 nm) if they are provided together with shorter-wavelength photons. Far-red photons also promote leaf and canopy expansion, which can increase light interception and growth. This study aimed to distinguish the contribution of morphological and physiological changes to crop growth induced by substituting red photons with far-red photons. We studied the long-term effects of substituting red photons with far-red photons on canopy light interception and whole-plant photosynthesis. ‘Little Gem’ lettuce (Lactuca sativa) seedlings were grown under four light spectrums of the same total photon flux density (400–750 nm). In addition to a background of a mixture of white and blue photons of 150 μ mol⋅m −2 ⋅s −1 , we provided 51 μ mol⋅m −2 ⋅s −1 red photons, far-red photons, or mixtures of red and far-red photons. In the first run, plants were harvested twice. The first harvest was at canopy closure, and the second harvest was when plants reached full size. In the second run, we harvested lettuce plants more frequently to minimize leaf overlap and interplant competition. We found that far-red photon substitution promoted leaf and canopy expansion and increased light interception. The effect of far-red photon substitution on leaf and canopy expansion was stronger in the second run than in the first run, likely because of lower plant density in the second run when plants were harvested more frequently. Far-red photon substitution of red photons decreased the amount of extended photosynthetically active radiation (ePAR) photons (400–750 nm) absorbed by leaves because of the lower leaf absorptance of far-red photons. The greater effect on canopy expansion in the second run of far-red photons substitution was able to exceed the reduction of ePAR photon absorption by leaves; therefore, we observed an increased crop gross photosynthetic rate (P g ) between the second and third harvests during the second run. However, during the first run, lower absorptance of ePAR completely offset the effect of the greater canopy size and light interception, and crop P g was decreased in the first run before the first harvest. The changes in light interception and crop P g resulting from far-red photon substitution did not affect dry weight. Far-red photons had photosynthetic activity when applied with a blue and white light mixture, but their efficiency was approximately half that of red photons, potentially because of the lower absorptance of far-red photons. In conclusion, far-red photon substitution of red photons increased canopy size but decreased ePAR photons absorbed by leaves and did not increase the final dry weight. Because far-red light-emitting diodes (LEDs) have hig
{"title":"Far-red Photons Increase Light Capture but Have Lower Photosynthetic Capacity Than Red Photons","authors":"Jun Liu, Marc W. van Iersel","doi":"10.21273/jashs05306-23","DOIUrl":"https://doi.org/10.21273/jashs05306-23","url":null,"abstract":"Far-red photons (700–750 nm) can accelerate crop growth during indoor production through both physiological and morphological processes. A previous study showed that far-red photons can drive photosynthesis with efficiency similar to that of traditionally defined photosynthetically active photons (400–700 nm) if they are provided together with shorter-wavelength photons. Far-red photons also promote leaf and canopy expansion, which can increase light interception and growth. This study aimed to distinguish the contribution of morphological and physiological changes to crop growth induced by substituting red photons with far-red photons. We studied the long-term effects of substituting red photons with far-red photons on canopy light interception and whole-plant photosynthesis. ‘Little Gem’ lettuce (Lactuca sativa) seedlings were grown under four light spectrums of the same total photon flux density (400–750 nm). In addition to a background of a mixture of white and blue photons of 150 μ mol⋅m −2 ⋅s −1 , we provided 51 μ mol⋅m −2 ⋅s −1 red photons, far-red photons, or mixtures of red and far-red photons. In the first run, plants were harvested twice. The first harvest was at canopy closure, and the second harvest was when plants reached full size. In the second run, we harvested lettuce plants more frequently to minimize leaf overlap and interplant competition. We found that far-red photon substitution promoted leaf and canopy expansion and increased light interception. The effect of far-red photon substitution on leaf and canopy expansion was stronger in the second run than in the first run, likely because of lower plant density in the second run when plants were harvested more frequently. Far-red photon substitution of red photons decreased the amount of extended photosynthetically active radiation (ePAR) photons (400–750 nm) absorbed by leaves because of the lower leaf absorptance of far-red photons. The greater effect on canopy expansion in the second run of far-red photons substitution was able to exceed the reduction of ePAR photon absorption by leaves; therefore, we observed an increased crop gross photosynthetic rate (P g ) between the second and third harvests during the second run. However, during the first run, lower absorptance of ePAR completely offset the effect of the greater canopy size and light interception, and crop P g was decreased in the first run before the first harvest. The changes in light interception and crop P g resulting from far-red photon substitution did not affect dry weight. Far-red photons had photosynthetic activity when applied with a blue and white light mixture, but their efficiency was approximately half that of red photons, potentially because of the lower absorptance of far-red photons. In conclusion, far-red photon substitution of red photons increased canopy size but decreased ePAR photons absorbed by leaves and did not increase the final dry weight. Because far-red light-emitting diodes (LEDs) have hig","PeriodicalId":17226,"journal":{"name":"Journal of the American Society for Horticultural Science","volume":"14 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135161759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Júlia Halász, Gergő Szendy, Beti Ivanovska, Endre György Tóth, Attila Hegedűs
A traditional cultivar, Besztercei Bt.2, and a clone of an autochthonous landrace (Nemtudom P3) of the hexaploid European plum ( Prunus domestica ) were studied to highlight their breeding perspectives. Five self-incompatibility ribonuclease ( S-RNase ) alleles were detected in both cultivars, with one allele shared. DNA sequence analysis confirmed it as a new, previously unidentified allele in P. domestica , which we labeled as S 18 . This allele was found to share ∼99% identity with the Prunus spinosa S B - RNase allele. Because Prunus species are readily hybridizing, sequence variations in 10 chloroplast DNA regions and nuclear internal transcribed spacers were studied to check if ‘Nemtudom P3’ and ‘Besztercei Bt.2’ are indeed P. domestica . The majority-rule consensus tree of maximum likelihood and Bayesian inferences confirmed it, and also indicated genetic differentiation with ‘Nemtudom P3’ and ‘Besztercei Bt.2’ forming a statistically supported subclade within the P. domestica germplasm. Our results pointed to some regions of the P. domestica chloroplast genome ( trnS - trnG - trnG , trnC-ycf6 , and trnD - trnT ) that can be used to detect intraspecific variations. The proportion of parsimony informative characters compared with the total length of amplified regions was the highest in the case of nrITS with 12.1%. The S -genotyping of 68 wild-growing Nemtudom trees showed the genetic consequences of long-term vegetative propagation and occasional crossing between Besztercei and Nemtudom accessions. Controlled pollinations confirmed the self-compatibility of ‘Nemtudom P3’. By clarifying their phylogenetic position, and characterizing the S -locus, our results will help breeding P. domestica cultivars and pave the way to understanding how the S -locus works in a hexaploid Prunus species.
{"title":"The Self-incompatibility Locus and Chloroplast DNA Regions of Prunus domestica Reflect the Origin and Genetic Diversity of Traditional Cultivars","authors":"Júlia Halász, Gergő Szendy, Beti Ivanovska, Endre György Tóth, Attila Hegedűs","doi":"10.21273/jashs05330-23","DOIUrl":"https://doi.org/10.21273/jashs05330-23","url":null,"abstract":"A traditional cultivar, Besztercei Bt.2, and a clone of an autochthonous landrace (Nemtudom P3) of the hexaploid European plum ( Prunus domestica ) were studied to highlight their breeding perspectives. Five self-incompatibility ribonuclease ( S-RNase ) alleles were detected in both cultivars, with one allele shared. DNA sequence analysis confirmed it as a new, previously unidentified allele in P. domestica , which we labeled as S 18 . This allele was found to share ∼99% identity with the Prunus spinosa S B - RNase allele. Because Prunus species are readily hybridizing, sequence variations in 10 chloroplast DNA regions and nuclear internal transcribed spacers were studied to check if ‘Nemtudom P3’ and ‘Besztercei Bt.2’ are indeed P. domestica . The majority-rule consensus tree of maximum likelihood and Bayesian inferences confirmed it, and also indicated genetic differentiation with ‘Nemtudom P3’ and ‘Besztercei Bt.2’ forming a statistically supported subclade within the P. domestica germplasm. Our results pointed to some regions of the P. domestica chloroplast genome ( trnS - trnG - trnG , trnC-ycf6 , and trnD - trnT ) that can be used to detect intraspecific variations. The proportion of parsimony informative characters compared with the total length of amplified regions was the highest in the case of nrITS with 12.1%. The S -genotyping of 68 wild-growing Nemtudom trees showed the genetic consequences of long-term vegetative propagation and occasional crossing between Besztercei and Nemtudom accessions. Controlled pollinations confirmed the self-compatibility of ‘Nemtudom P3’. By clarifying their phylogenetic position, and characterizing the S -locus, our results will help breeding P. domestica cultivars and pave the way to understanding how the S -locus works in a hexaploid Prunus species.","PeriodicalId":17226,"journal":{"name":"Journal of the American Society for Horticultural Science","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135736285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuxiao Zhang, Minmin Wang, Alisa Chernikova, Shaina Eagle, Kaleigh Marie Bedell, Karen Nguyen, Barbara Blanco-Ulate, Judy Jernstedt, Georgia Drakakaki
A fully split shell in pistachio ( Pistacia vera ) is a trait that is preferred by consumers and is a criterion in evaluating the grade of the pistachio nut. However, although the expanding kernel has been hypothesized to provide the physical force needed for shell split, the mechanisms that control shell split remain unknown. Furthermore, it is intriguing how the shell, or endocarp, splits at the suture ridge when there is no clear dehiscence zone. The objectives of this study were 1) to identify traits associated with dehiscence in fruit in the high-split rate cultivar Golden Hills when compared with the lower split rate cultivar Kerman and determine the anatomic features associated with endocarp dehiscence at the suture region, and 2) to examine the effect of kernel shape on endocarp dehiscence. We determined that, despite the fact that the pistachio endocarp is composed primarily of a single type of polylobate sclerenchyma cell, specialization of cell shape and size at the suture site results in smaller, more flattened cells. We report there is a furrowing of the shell at the dorsal and apical suture sites, where dehiscence initiates. This furrowing is not observed at the ventral suture site or in the indehiscent fruit of Pistacia atlantica , a species that has been used as rootstock for P. vera . In addition, the size of the kernel in the sagittal axis (the width) is strongly associated with a greater split rate. Based on our results, a tentative model emerges in which, in the absence of specialized cell types, cell shape modification can create an anatomically distinct region that is mechanically weak in the endocarp for the initiation of dehiscence, whereas the force from the width of the kernel is necessary for the shell split rate difference as observed in cultivars.
{"title":"Difference in Kernel Shape and Endocarp Anatomy Promote Dehiscence in Pistachio Endocarp","authors":"Shuxiao Zhang, Minmin Wang, Alisa Chernikova, Shaina Eagle, Kaleigh Marie Bedell, Karen Nguyen, Barbara Blanco-Ulate, Judy Jernstedt, Georgia Drakakaki","doi":"10.21273/jashs05324-23","DOIUrl":"https://doi.org/10.21273/jashs05324-23","url":null,"abstract":"A fully split shell in pistachio ( Pistacia vera ) is a trait that is preferred by consumers and is a criterion in evaluating the grade of the pistachio nut. However, although the expanding kernel has been hypothesized to provide the physical force needed for shell split, the mechanisms that control shell split remain unknown. Furthermore, it is intriguing how the shell, or endocarp, splits at the suture ridge when there is no clear dehiscence zone. The objectives of this study were 1) to identify traits associated with dehiscence in fruit in the high-split rate cultivar Golden Hills when compared with the lower split rate cultivar Kerman and determine the anatomic features associated with endocarp dehiscence at the suture region, and 2) to examine the effect of kernel shape on endocarp dehiscence. We determined that, despite the fact that the pistachio endocarp is composed primarily of a single type of polylobate sclerenchyma cell, specialization of cell shape and size at the suture site results in smaller, more flattened cells. We report there is a furrowing of the shell at the dorsal and apical suture sites, where dehiscence initiates. This furrowing is not observed at the ventral suture site or in the indehiscent fruit of Pistacia atlantica , a species that has been used as rootstock for P. vera . In addition, the size of the kernel in the sagittal axis (the width) is strongly associated with a greater split rate. Based on our results, a tentative model emerges in which, in the absence of specialized cell types, cell shape modification can create an anatomically distinct region that is mechanically weak in the endocarp for the initiation of dehiscence, whereas the force from the width of the kernel is necessary for the shell split rate difference as observed in cultivars.","PeriodicalId":17226,"journal":{"name":"Journal of the American Society for Horticultural Science","volume":"98 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135394892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Per McCord, Vishal Singh, Amita Kaundal, Teryl Roper
We evaluated the genetic diversity of a newly available collection of 94 almond [ Prunus dulcis (Mill.) D.A. Webb] accessions from the former Improving Perennial Plants for Food and Bioenergy (IPPFBE) Foundation. Most of the collection (87 accessions) were collected as seeds from trees growing in the central Asian nations of Kyrgyzstan, Tajikistan, and Uzbekistan, and included several examples of Prunus bucharica (Korsh.) Hand.-Mazz, and related wild species. Of the remaining accessions, six were sourced from a nursery in northern Utah in the United States, and one was a seedling of ‘Nonpareil’, a major commercial cultivar. DNA fingerprints were generated from 10 simple sequence repeat markers. To evaluate the comparative diversity of these new accessions, 66 accessions from the US Department of Agriculture, National Plant Germplasm System (NPGS) almond germplasm collection near Davis, CA, USA, were also included. These NPGS accessions were chosen to represent those collected in similar regions of Central Asia and the Caucasus. The fingerprints were analyzed via hierarchical clustering, principal components analysis (PCA), and discriminant analysis of principal components (DAPC). Hierarchical clustering suggested that half of the Utah-sourced accessions are closely related to each other and to the ‘Nonpareil’ seedling. Additional close relationships were detected (including at least one duplication or mislabeling), and two P. bucharica accessions from the IPPFBE collection were separated from the rest of the collection. A plot of the first two principal components clearly separated wild almond relatives ( P. bucharica and Prunus fenzliana Fritsch) from the remaining accessions. PCA after removal of the wild species separated the ‘Nonpareil’ seedling, the Utah-sourced accessions, and many of the IPPFBE accessions (mostly from Uzbekistan) from nearly all other individuals. The third principal component identified an additional population structure that separated groups of predominantly IPPFBE or NPGS accessions. DAPC showed a considerable admixture of accessions from Azerbaijan, and a little to no admixture of accessions from Georgia and Tajikistan. These results suggest that central Asian/Caucasian almond germplasm is generally distinct from ‘Nonpareil’ and its relatives, and that although there is overlap between the NPGS and IPPFBE collections from this region, the IPPFBE collection does enhance the diversity of available almond germplasm.
{"title":"Genetic Diversity of New Almond Accessions from Central Asian and Cold-adapted North American Germplasm","authors":"Per McCord, Vishal Singh, Amita Kaundal, Teryl Roper","doi":"10.21273/jashs05292-23","DOIUrl":"https://doi.org/10.21273/jashs05292-23","url":null,"abstract":"We evaluated the genetic diversity of a newly available collection of 94 almond [ Prunus dulcis (Mill.) D.A. Webb] accessions from the former Improving Perennial Plants for Food and Bioenergy (IPPFBE) Foundation. Most of the collection (87 accessions) were collected as seeds from trees growing in the central Asian nations of Kyrgyzstan, Tajikistan, and Uzbekistan, and included several examples of Prunus bucharica (Korsh.) Hand.-Mazz, and related wild species. Of the remaining accessions, six were sourced from a nursery in northern Utah in the United States, and one was a seedling of ‘Nonpareil’, a major commercial cultivar. DNA fingerprints were generated from 10 simple sequence repeat markers. To evaluate the comparative diversity of these new accessions, 66 accessions from the US Department of Agriculture, National Plant Germplasm System (NPGS) almond germplasm collection near Davis, CA, USA, were also included. These NPGS accessions were chosen to represent those collected in similar regions of Central Asia and the Caucasus. The fingerprints were analyzed via hierarchical clustering, principal components analysis (PCA), and discriminant analysis of principal components (DAPC). Hierarchical clustering suggested that half of the Utah-sourced accessions are closely related to each other and to the ‘Nonpareil’ seedling. Additional close relationships were detected (including at least one duplication or mislabeling), and two P. bucharica accessions from the IPPFBE collection were separated from the rest of the collection. A plot of the first two principal components clearly separated wild almond relatives ( P. bucharica and Prunus fenzliana Fritsch) from the remaining accessions. PCA after removal of the wild species separated the ‘Nonpareil’ seedling, the Utah-sourced accessions, and many of the IPPFBE accessions (mostly from Uzbekistan) from nearly all other individuals. The third principal component identified an additional population structure that separated groups of predominantly IPPFBE or NPGS accessions. DAPC showed a considerable admixture of accessions from Azerbaijan, and a little to no admixture of accessions from Georgia and Tajikistan. These results suggest that central Asian/Caucasian almond germplasm is generally distinct from ‘Nonpareil’ and its relatives, and that although there is overlap between the NPGS and IPPFBE collections from this region, the IPPFBE collection does enhance the diversity of available almond germplasm.","PeriodicalId":17226,"journal":{"name":"Journal of the American Society for Horticultural Science","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135640384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.21273/jashs1485corrig-23
{"title":"Corrigenda","authors":"","doi":"10.21273/jashs1485corrig-23","DOIUrl":"https://doi.org/10.21273/jashs1485corrig-23","url":null,"abstract":"","PeriodicalId":17226,"journal":{"name":"Journal of the American Society for Horticultural Science","volume":"58 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135640560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Safa A. Alzohairy, Bethany M. Moore, Raymond Hammerschmidt, Shin-Han Shiu, Mary K. Hausbeck
The Oomycete plant pathogen, Phytophthora capsici , causes root, crown, and fruit rot of winter squash ( Cucurbita moschata ) and limits production. Some C. moschata cultivars develop age-related resistance (ARR), whereby fruit develop resistance to P. capsici 14 to 21 days postpollination (DPP) because of thickened exocarp; however, wounding negates ARR. We uncovered the genetic mechanisms of ARR of two C. moschata cultivars, Chieftain and Dickenson Field, that exhibit ARR at 14 and 21 DPP, respectively, using RNA sequencing. The sequencing was conducted using RNA samples from ‘Chieftain’ and ‘Dickenson Field’ fruit at 7, 10, 14, and 21 DPP. A differential expression and subsequent gene set enrichment analysis revealed an overrepresentation of upregulated genes in functional categories relevant to cell wall structure biosynthesis, cell wall modification/organization, transcription regulation, and metabolic processes. A pathway enrichment analysis detected upregulated genes in cutin, suberin monomer, and phenylpropanoid biosynthetic pathways. A further analysis of the expression profile of genes in those pathways revealed upregulation of genes in monolignol biosynthesis and lignin polymerization in the resistant fruit peel. Our findings suggest a shift in gene expression toward the physical strengthening of the cell wall associated with ARR to P. capsici . These findings provide candidate genes for developing Cucurbita cultivars with resistance to P. capsici and improve fruit rot management in Cucurbita species.
{"title":"Lignin Biosynthesis Gene Expression Is Associated with Age-related Resistance of Winter Squash to Phytophthora capsici","authors":"Safa A. Alzohairy, Bethany M. Moore, Raymond Hammerschmidt, Shin-Han Shiu, Mary K. Hausbeck","doi":"10.21273/jashs05317-23","DOIUrl":"https://doi.org/10.21273/jashs05317-23","url":null,"abstract":"The Oomycete plant pathogen, Phytophthora capsici , causes root, crown, and fruit rot of winter squash ( Cucurbita moschata ) and limits production. Some C. moschata cultivars develop age-related resistance (ARR), whereby fruit develop resistance to P. capsici 14 to 21 days postpollination (DPP) because of thickened exocarp; however, wounding negates ARR. We uncovered the genetic mechanisms of ARR of two C. moschata cultivars, Chieftain and Dickenson Field, that exhibit ARR at 14 and 21 DPP, respectively, using RNA sequencing. The sequencing was conducted using RNA samples from ‘Chieftain’ and ‘Dickenson Field’ fruit at 7, 10, 14, and 21 DPP. A differential expression and subsequent gene set enrichment analysis revealed an overrepresentation of upregulated genes in functional categories relevant to cell wall structure biosynthesis, cell wall modification/organization, transcription regulation, and metabolic processes. A pathway enrichment analysis detected upregulated genes in cutin, suberin monomer, and phenylpropanoid biosynthetic pathways. A further analysis of the expression profile of genes in those pathways revealed upregulation of genes in monolignol biosynthesis and lignin polymerization in the resistant fruit peel. Our findings suggest a shift in gene expression toward the physical strengthening of the cell wall associated with ARR to P. capsici . These findings provide candidate genes for developing Cucurbita cultivars with resistance to P. capsici and improve fruit rot management in Cucurbita species.","PeriodicalId":17226,"journal":{"name":"Journal of the American Society for Horticultural Science","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135736148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Michael, L. Demesyeux, A. Bombarely, Xingbo Wu, A. Chambers
Miracle fruit (Synsepalum dulcificum) is the botanical source of miraculin, a natural, noncaloric sweetener. Miracle fruit plants have a bush-like architecture and produce multiple flushes of attractive red berries each year. The berries consist of a large seed, opaque pulp, and brilliant red peel. The pulp of the fruit contains a glycoprotein, miraculin, that binds to the tongue’s sweet receptors and induces a conformational change in response to acidic stimuli. Thus, a strong sweet sensation is imparted in the absence of sugars. The miracle fruit plant is becoming increasingly popular because of its taste-modifying properties, but the species lacks many of the breeding tools common to other crops. We report miracle fruit pulp transcriptomes from ‘Sangria’, ‘Vermilion’, ‘Flame’, and ‘Cherry’ morphotypes. A consensus transcriptome included 91,856 transcripts. Reads mapping to the miraculin gene had the highest representation in individual miracle fruit pulp transcriptomes. Other abundant transcripts primarily included Gene Ontology categories representing cellular components, nucleus and nucleic acid binding, and protein modification. The transcriptomes were used to design real-time quantitative reverse-transcription polymerase chain reaction (qRT-PCR) primers for actin, elongation factor 1α, and the miraculin gene. Analysis by qRT-PCR indicated that miracle fruit pulp and peel tissues had the highest abundance of miraculin transcripts, although other tissues such as leaf, root, and flower also had detectable levels of the target sequence. Overall, these results will support discovery research for miracle fruit and the eventual breeding of this species.
{"title":"Miracle Fruit Pulp Transcriptomes Identify Genetic Variants in Support of Discovery Research and Breeding","authors":"V. Michael, L. Demesyeux, A. Bombarely, Xingbo Wu, A. Chambers","doi":"10.21273/jashs05312-23","DOIUrl":"https://doi.org/10.21273/jashs05312-23","url":null,"abstract":"Miracle fruit (Synsepalum dulcificum) is the botanical source of miraculin, a natural, noncaloric sweetener. Miracle fruit plants have a bush-like architecture and produce multiple flushes of attractive red berries each year. The berries consist of a large seed, opaque pulp, and brilliant red peel. The pulp of the fruit contains a glycoprotein, miraculin, that binds to the tongue’s sweet receptors and induces a conformational change in response to acidic stimuli. Thus, a strong sweet sensation is imparted in the absence of sugars. The miracle fruit plant is becoming increasingly popular because of its taste-modifying properties, but the species lacks many of the breeding tools common to other crops. We report miracle fruit pulp transcriptomes from ‘Sangria’, ‘Vermilion’, ‘Flame’, and ‘Cherry’ morphotypes. A consensus transcriptome included 91,856 transcripts. Reads mapping to the miraculin gene had the highest representation in individual miracle fruit pulp transcriptomes. Other abundant transcripts primarily included Gene Ontology categories representing cellular components, nucleus and nucleic acid binding, and protein modification. The transcriptomes were used to design real-time quantitative reverse-transcription polymerase chain reaction (qRT-PCR) primers for actin, elongation factor 1α, and the miraculin gene. Analysis by qRT-PCR indicated that miracle fruit pulp and peel tissues had the highest abundance of miraculin transcripts, although other tissues such as leaf, root, and flower also had detectable levels of the target sequence. Overall, these results will support discovery research for miracle fruit and the eventual breeding of this species.","PeriodicalId":17226,"journal":{"name":"Journal of the American Society for Horticultural Science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42815671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ziqi Huang, Lin Zhang, Xinke Li, N. Lin, Yanpei Liu, Yihan Wang, Peng Guo, F. Shang
Crabapples (Malus sp.) are ornamental woody plants that belong to the Rosaceae family. Flooding has severely hampered the growth and development of crabapple, and little is known about the molecular responses of crabapple to waterlogging tolerance. Cuttings of waterlogging-tolerant Malus hupehensis and waterlogging-intolerant Malus halliana received flooding treatment of 30 days and regular planting, respectively. Using transcriptome sequencing, we isolated 5703 and 2735 waterlogging-responsive genes from waterlogging-treated M. hupehensis and M. halliana leaves. Among these differentially expressed genes (DEGs), only 746 were shared by both. Several variables may explain the greater waterlogging tolerance of M. hupehensis: there were more waterlogging response genes related to carbohydrate and energy metabolism; signal transduction; antioxidation; lipid metabolism; protein and amino acid metabolism; and polysaccharide, cell wall, and cytoskeleton metabolism pathway in the waterlogged leaves of M. hupehensis than in M. halliana. In particular, the number of DEGs related to anaerobic metabolism, fatty acid metabolism, protein phosphorylation and dephosphorylation, γ-aminobutyric acid metabolism and cellulase, pectinase metabolism pathway in the flooded leaves of M. hupehensis was more than that in M. halliana. The alterations in gene expression patterns of the two crabapple species induced by waterlogging varied substantially. These outcomes pave the way for further studies into the functions of genes that may be involved in waterlogging tolerance in crabapples.
{"title":"Waterlogging-responsive Genes Revealed by Transcriptome Sequencing in Leaves of Two Crabapple Species with Contrasting Waterlogging Tolerance","authors":"Ziqi Huang, Lin Zhang, Xinke Li, N. Lin, Yanpei Liu, Yihan Wang, Peng Guo, F. Shang","doi":"10.21273/jashs05287-22","DOIUrl":"https://doi.org/10.21273/jashs05287-22","url":null,"abstract":"Crabapples (Malus sp.) are ornamental woody plants that belong to the Rosaceae family. Flooding has severely hampered the growth and development of crabapple, and little is known about the molecular responses of crabapple to waterlogging tolerance. Cuttings of waterlogging-tolerant Malus hupehensis and waterlogging-intolerant Malus halliana received flooding treatment of 30 days and regular planting, respectively. Using transcriptome sequencing, we isolated 5703 and 2735 waterlogging-responsive genes from waterlogging-treated M. hupehensis and M. halliana leaves. Among these differentially expressed genes (DEGs), only 746 were shared by both. Several variables may explain the greater waterlogging tolerance of M. hupehensis: there were more waterlogging response genes related to carbohydrate and energy metabolism; signal transduction; antioxidation; lipid metabolism; protein and amino acid metabolism; and polysaccharide, cell wall, and cytoskeleton metabolism pathway in the waterlogged leaves of M. hupehensis than in M. halliana. In particular, the number of DEGs related to anaerobic metabolism, fatty acid metabolism, protein phosphorylation and dephosphorylation, γ-aminobutyric acid metabolism and cellulase, pectinase metabolism pathway in the flooded leaves of M. hupehensis was more than that in M. halliana. The alterations in gene expression patterns of the two crabapple species induced by waterlogging varied substantially. These outcomes pave the way for further studies into the functions of genes that may be involved in waterlogging tolerance in crabapples.","PeriodicalId":17226,"journal":{"name":"Journal of the American Society for Horticultural Science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49203033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Belisle, G. Sandoya, S. Sargent, Gustavo Kreutz
Pink rib discoloration or pinking in the midribs of lettuce (Lactuca sativa) leaves is a stress-induced disorder that leads to crop loss worldwide. Maintaining recommended field and postharvest conditions reduces its incidence but does not eliminate the issue. During the past decade, research has identified the tolerance of this disorder among lettuce types and cultivars grown in cooler climates. However, tolerance to pink rib among lettuce types grown in humid subtropical climates is unknown; therefore, it is necessary to screen lettuce germplasm under these growing conditions. During this study, diverse lettuce accessions were planted for early-season, mid-season, and late-season harvests over two seasons in Belle Glade, FL, USA. Harvested midribs were wounded to induce pink rib, stored for 6 to 9 days at 5 °C and >95% relative humidity, and rated for severity using a 5-point subjective scale. Genotype × environment interactions were evaluated to understand the environmental factors that favor the development of pink rib during storage and between planting seasons. Pink rib severity increased during storage, with the highest increase observed after 3 to 4 days in both seasons. After 9 days of storage, lettuce accessions with the least pink rib for each leaf type were identified. The lowest pink rib ratings after 9 days of storage were “moderate” (rating of 3) for crisphead, Latin, and romaine, “slight” (rating of 2) for butterhead types, and “none” (rating of 1) for leaf types. Additionally, pink rib severity increased among accessions during the late spring season harvest when field temperatures were higher and daylight hours were extended. The lettuce germplasm with low susceptibility to pink rib is promising to breed lettuce lines for future research.
{"title":"Lettuce Germplasm in Humid Subtropical Environments Tolerant to Postharvest Development of Pink Rib Disorder","authors":"C. Belisle, G. Sandoya, S. Sargent, Gustavo Kreutz","doi":"10.21273/jashs05295-23","DOIUrl":"https://doi.org/10.21273/jashs05295-23","url":null,"abstract":"Pink rib discoloration or pinking in the midribs of lettuce (Lactuca sativa) leaves is a stress-induced disorder that leads to crop loss worldwide. Maintaining recommended field and postharvest conditions reduces its incidence but does not eliminate the issue. During the past decade, research has identified the tolerance of this disorder among lettuce types and cultivars grown in cooler climates. However, tolerance to pink rib among lettuce types grown in humid subtropical climates is unknown; therefore, it is necessary to screen lettuce germplasm under these growing conditions. During this study, diverse lettuce accessions were planted for early-season, mid-season, and late-season harvests over two seasons in Belle Glade, FL, USA. Harvested midribs were wounded to induce pink rib, stored for 6 to 9 days at 5 °C and >95% relative humidity, and rated for severity using a 5-point subjective scale. Genotype × environment interactions were evaluated to understand the environmental factors that favor the development of pink rib during storage and between planting seasons. Pink rib severity increased during storage, with the highest increase observed after 3 to 4 days in both seasons. After 9 days of storage, lettuce accessions with the least pink rib for each leaf type were identified. The lowest pink rib ratings after 9 days of storage were “moderate” (rating of 3) for crisphead, Latin, and romaine, “slight” (rating of 2) for butterhead types, and “none” (rating of 1) for leaf types. Additionally, pink rib severity increased among accessions during the late spring season harvest when field temperatures were higher and daylight hours were extended. The lettuce germplasm with low susceptibility to pink rib is promising to breed lettuce lines for future research.","PeriodicalId":17226,"journal":{"name":"Journal of the American Society for Horticultural Science","volume":"1 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67935041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}