Bao Yang, Ying Li, Fei Wang, Stephanie Auyeung, Manyui Leung, Margaret Mak, Xiaoming Tao
{"title":"Intelligent wearable system with accurate detection of abnormal gait and timely cueing for mobility enhancement of people with Parkinson's disease.","authors":"Bao Yang, Ying Li, Fei Wang, Stephanie Auyeung, Manyui Leung, Margaret Mak, Xiaoming Tao","doi":"10.1017/wtc.2022.9","DOIUrl":null,"url":null,"abstract":"<p><p>Previously reported wearable systems for people with Parkinson's disease (PD) have been focused on the detection of abnormal gait. They suffered from limited accuracy, large latency, poor durability, comfort, and convenience for daily use. Herewith we report an intelligent wearable system (IWS) that can accurately detect abnormal gait in real-time and provide timely cueing for PD patients. The system features novel sensitive, comfortable and durable plantar pressure sensing insoles with a highly compressed data set, an accurate and fast gait algorithm, and wirelessly controlled timely sensory cueing devices. A total of 29 PD patients participated in the first phase without cueing for developing processes of the algorithm, which achieved an accuracy of over 97% for off-line detection of freezing of gait (FoG). In the second phase with cueing, the evaluation of the whole system was conducted with 16 PD subjects via trial and a questionnaire survey. This system demonstrated an accuracy of 94% for real-time detection of FoG and a mean latency of 0.37 s between the onset of FoG and cueing activation. In questionnaire survey, 88% of the PD participants confirmed that this wearable system could effectively enhance walking, 81% thought that the system was comfortable and convenient, and 70% overcame the FoG. Therefore, the IWS makes it an effective, powerful, and convenient tool for enhancing the mobility of people with PD.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":" ","pages":"e12"},"PeriodicalIF":4.7000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936378/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/wtc.2022.9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Previously reported wearable systems for people with Parkinson's disease (PD) have been focused on the detection of abnormal gait. They suffered from limited accuracy, large latency, poor durability, comfort, and convenience for daily use. Herewith we report an intelligent wearable system (IWS) that can accurately detect abnormal gait in real-time and provide timely cueing for PD patients. The system features novel sensitive, comfortable and durable plantar pressure sensing insoles with a highly compressed data set, an accurate and fast gait algorithm, and wirelessly controlled timely sensory cueing devices. A total of 29 PD patients participated in the first phase without cueing for developing processes of the algorithm, which achieved an accuracy of over 97% for off-line detection of freezing of gait (FoG). In the second phase with cueing, the evaluation of the whole system was conducted with 16 PD subjects via trial and a questionnaire survey. This system demonstrated an accuracy of 94% for real-time detection of FoG and a mean latency of 0.37 s between the onset of FoG and cueing activation. In questionnaire survey, 88% of the PD participants confirmed that this wearable system could effectively enhance walking, 81% thought that the system was comfortable and convenient, and 70% overcame the FoG. Therefore, the IWS makes it an effective, powerful, and convenient tool for enhancing the mobility of people with PD.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico