Local Optimality Conditions for a Family of Hidden Convex Optimization

Mengmeng Song, Yong Xia, Hongying Liu
{"title":"Local Optimality Conditions for a Family of Hidden Convex Optimization","authors":"Mengmeng Song, Yong Xia, Hongying Liu","doi":"10.1287/ijoo.2023.0089","DOIUrl":null,"url":null,"abstract":"Hidden convex optimization is a class of nonconvex optimization problems that can be globally solved in polynomial time via equivalent convex programming reformulations. In this paper, we study a family of hidden convex optimization that joints the classical trust region subproblem (TRS) with convex optimization (CO). It also includes p-regularized subproblem (p > 2) as a special case. We present a comprehensive study on local optimality conditions. In particular, a sufficient condition is given to ensure that there is at most one local nonglobal minimizer, and at this point, the standard second-order sufficient optimality condition is necessary. To our surprise, although (TRS) has at most one local nonglobal minimizer and (CO) has no local nonglobal minimizer, their joint problem could have any finite number of local nonglobal minimizers. Funding: This work was supported by the National Natural Science Foundation of China [Grants 12171021, 12131004, and 11822103], the Beijing Natural Science Foundation [Grant Z180005], and the Fundamental Research Funds for the Central Universities. Supplemental Material: The online appendix is available at https://doi.org/10.1287/ijoo.2023.0089 .","PeriodicalId":73382,"journal":{"name":"INFORMS journal on optimization","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INFORMS journal on optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/ijoo.2023.0089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hidden convex optimization is a class of nonconvex optimization problems that can be globally solved in polynomial time via equivalent convex programming reformulations. In this paper, we study a family of hidden convex optimization that joints the classical trust region subproblem (TRS) with convex optimization (CO). It also includes p-regularized subproblem (p > 2) as a special case. We present a comprehensive study on local optimality conditions. In particular, a sufficient condition is given to ensure that there is at most one local nonglobal minimizer, and at this point, the standard second-order sufficient optimality condition is necessary. To our surprise, although (TRS) has at most one local nonglobal minimizer and (CO) has no local nonglobal minimizer, their joint problem could have any finite number of local nonglobal minimizers. Funding: This work was supported by the National Natural Science Foundation of China [Grants 12171021, 12131004, and 11822103], the Beijing Natural Science Foundation [Grant Z180005], and the Fundamental Research Funds for the Central Universities. Supplemental Material: The online appendix is available at https://doi.org/10.1287/ijoo.2023.0089 .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一类隐凸优化的局部最优性条件
隐凸优化是一类非凸优化问题,可以通过等价凸规划公式在多项式时间内全局求解。本文研究了一类将经典信赖域子问题(TRS)与凸优化(CO)相结合的隐凸优化。它还包括作为特例的p-正则化子问题(p>2)。我们对局部最优性条件进行了全面的研究。特别地,给出了一个充分条件,以确保最多存在一个局部非全局极小值,并且在这一点上,标准的二阶充分最优性条件是必要的。令我们惊讶的是,尽管(TRS)最多有一个局部非全局极小值,(CO)没有局部非全局最小值,但它们的联合问题可以有任何有限数量的局部非全局最小化器。基金资助:本研究得到了国家自然科学基金【12171021、12131004、11822103】、北京市自然科学基金(Z180005)和中央高校基本科研业务费的资助。补充材料:在线附录可在https://doi.org/10.1287/ijoo.2023.0089。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Stochastic Inexact Sequential Quadratic Optimization Algorithm for Nonlinear Equality-Constrained Optimization Scenario-Based Robust Optimization for Two-Stage Decision Making Under Binary Uncertainty On the Hardness of Learning from Censored and Nonstationary Demand Temporal Bin Packing with Half-Capacity Jobs Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1