{"title":"Design, Construction, and Evaluation of the Performance of Dual-Axis Sun Trucker Parabolic Solar Cooker and Comparison of Cooker","authors":"Solomon Tibebu, Arkbom Hailu","doi":"10.1155/2021/8944722","DOIUrl":null,"url":null,"abstract":"Energy demand is increasing due to population increment and industrialization. To meet this energy demand, technologies that use renewable energy such as solar energy are being developed. A parabolic solar cooker is one of the main solar cookers, which can cook food and boil water at a high temperature within a short period. This study aimed to design, construct, and evaluate the performance of the constructed parabolic solar cookers. Moreover, this study aimed to compare the constructed cooker with firewood, charcoal, kerosene, and electricity in terms of cooking time and energy cost. The cooker was constructed using different materials such as old satellite dishes, tyres, steel, and aluminum foil. The aperture diameter, aperture area, receiver diameter, receiver area, depth of the parabola, focal length, rim angle, circumference of the circle, surface area, length of the circumference, and concentration of the cooker were 1.8 m, 2.54 m2, 0.16 m, 0.02 m2, 0.3 m, 0.67 m, 67.38°, 5.76 m, 2.81 m2, 5.76 m, and 123.46, respectively. The cooker can track the sun from north to south and from east to west. The performance of the cooker was evaluated by calculating the efficiency and power. The output energy, input energy, and average upcoming solar radiation of the constructed parabolic solar cooker were 0.182 kW/m2, 1.691 kW/m2, and 0.665 kW/m2, respectively. The efficiency and power of the cooker were 10.75% and 0.3 kW/hr, respectively. The constructed parabolic solar cooker relatively showed better performance in cooking different foods. A family, which has five members, was considered to compare the constructed cooker with other fuels in terms of energy cost of cooking. Since the parabolic solar cooker does not have any energy cost, it can save the energy cost of cooking foods. Therefore, parabolic solar cookers have a great advantage for developing countries including Ethiopia.","PeriodicalId":30460,"journal":{"name":"Journal of Renewable Energy","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/8944722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Energy demand is increasing due to population increment and industrialization. To meet this energy demand, technologies that use renewable energy such as solar energy are being developed. A parabolic solar cooker is one of the main solar cookers, which can cook food and boil water at a high temperature within a short period. This study aimed to design, construct, and evaluate the performance of the constructed parabolic solar cookers. Moreover, this study aimed to compare the constructed cooker with firewood, charcoal, kerosene, and electricity in terms of cooking time and energy cost. The cooker was constructed using different materials such as old satellite dishes, tyres, steel, and aluminum foil. The aperture diameter, aperture area, receiver diameter, receiver area, depth of the parabola, focal length, rim angle, circumference of the circle, surface area, length of the circumference, and concentration of the cooker were 1.8 m, 2.54 m2, 0.16 m, 0.02 m2, 0.3 m, 0.67 m, 67.38°, 5.76 m, 2.81 m2, 5.76 m, and 123.46, respectively. The cooker can track the sun from north to south and from east to west. The performance of the cooker was evaluated by calculating the efficiency and power. The output energy, input energy, and average upcoming solar radiation of the constructed parabolic solar cooker were 0.182 kW/m2, 1.691 kW/m2, and 0.665 kW/m2, respectively. The efficiency and power of the cooker were 10.75% and 0.3 kW/hr, respectively. The constructed parabolic solar cooker relatively showed better performance in cooking different foods. A family, which has five members, was considered to compare the constructed cooker with other fuels in terms of energy cost of cooking. Since the parabolic solar cooker does not have any energy cost, it can save the energy cost of cooking foods. Therefore, parabolic solar cookers have a great advantage for developing countries including Ethiopia.