Bioenergy Production Potential of Available Biomass Residue Resources in Ethiopia

A. Tolessa
{"title":"Bioenergy Production Potential of Available Biomass Residue Resources in Ethiopia","authors":"A. Tolessa","doi":"10.1155/2023/2407300","DOIUrl":null,"url":null,"abstract":"The study intends to present the bioenergy potential in Ethiopia using major sources of biomass generation. The study utilized data from secondary sources to generate the potential using the available biomass sources within the country. In order to determine the bioenergy potential, four residue biomass sources, including livestock manure, crop residues, forest residues, and municipal solid waste (MSW) from major cities, were considered. The Food and Agriculture Organization Corporate Statistical (FAOSTAT) Database as well as national and local reports were used to compile information on crops, forests, animals, and human populations. The potential of each source is estimated for 2020-21 as the base year. The total bioenergy potential of the country is estimated to be 2955 petajoule (PJ) per year, with 56.01% of it coming from forest residue, 28.29% from crop residue, 15.36% from livestock waste, and 0.33% from MSW. In addition, it is estimated that 819.7 terawatt hours (TWh) of electricity may be generated from all sources yearly. This is equivalent to around 8, 58, and 89 times Ethiopia’s total primary energy consumption, electricity production, and electricity net consumption in 2020, respectively. Results also demonstrated that the total potential (819.7 TWh·y−1) is roughly 56% greater than the forest residues’ potential alone (459 TWh·y−1). This implies that biomass resources might be crucial in assisting Ethiopia to fulfill its future energy needs. To fully realize the availability of biomass energy, the study suggests performing integrated development research, choosing the best feedstock and value chains for bioenergy, and creating a bioenergy database.","PeriodicalId":30460,"journal":{"name":"Journal of Renewable Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/2407300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The study intends to present the bioenergy potential in Ethiopia using major sources of biomass generation. The study utilized data from secondary sources to generate the potential using the available biomass sources within the country. In order to determine the bioenergy potential, four residue biomass sources, including livestock manure, crop residues, forest residues, and municipal solid waste (MSW) from major cities, were considered. The Food and Agriculture Organization Corporate Statistical (FAOSTAT) Database as well as national and local reports were used to compile information on crops, forests, animals, and human populations. The potential of each source is estimated for 2020-21 as the base year. The total bioenergy potential of the country is estimated to be 2955 petajoule (PJ) per year, with 56.01% of it coming from forest residue, 28.29% from crop residue, 15.36% from livestock waste, and 0.33% from MSW. In addition, it is estimated that 819.7 terawatt hours (TWh) of electricity may be generated from all sources yearly. This is equivalent to around 8, 58, and 89 times Ethiopia’s total primary energy consumption, electricity production, and electricity net consumption in 2020, respectively. Results also demonstrated that the total potential (819.7 TWh·y−1) is roughly 56% greater than the forest residues’ potential alone (459 TWh·y−1). This implies that biomass resources might be crucial in assisting Ethiopia to fulfill its future energy needs. To fully realize the availability of biomass energy, the study suggests performing integrated development research, choosing the best feedstock and value chains for bioenergy, and creating a bioenergy database.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
埃塞俄比亚可用生物质残渣资源的生物能源生产潜力
该研究旨在介绍埃塞俄比亚利用生物质发电的主要来源的生物能源潜力。该研究利用二手来源的数据,利用该国现有的生物质资源来产生潜力。为了确定生物能源的潜力,研究了家畜粪便、农作物秸秆、森林秸秆和主要城市的城市固体废物4种残渣生物质来源。粮食及农业组织统计数据库以及国家和地方报告被用来汇编关于作物、森林、动物和人口的信息。每种来源的潜力以2020-21年为基准年进行估算。该国的生物能源潜力估计为每年2955焦(PJ),其中56.01%来自森林残渣,28.29%来自作物残渣,15.36%来自牲畜粪便,0.33%来自城市生活垃圾。此外,据估计,所有来源每年可产生819.7太瓦时(TWh)的电力。这相当于埃塞俄比亚2020年一次能源消费总量、电力生产总量和电力净消耗总量的8倍、58倍和89倍。结果还表明,总电势(819.7 TWh·y−1)比森林残余物的电势(459 TWh·y−1)大56%左右。这意味着生物质资源在帮助埃塞俄比亚满足其未来的能源需求方面可能是至关重要的。为了充分认识生物质能的可利用性,研究建议开展综合开发研究,选择生物质能的最佳原料和价值链,建立生物质能数据库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
5
审稿时长
21 weeks
期刊最新文献
A Review on the Recent Advances in Battery Development and Energy Storage Technologies Technical Evaluation of Photovoltaic Systems in the Bamenda Municipality of the North West Region of Cameroon CFD Simulations and Experimental Investigation of a Flat-Plate Solar Air Heater at Different Positions of Inlet and Outlet Bioenergy Production Potential of Available Biomass Residue Resources in Ethiopia A Bottom-Up Approach to PV System Design for Rural Locality Electrification: A Case Study in Burkina Faso
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1