Optimally designed tunable phase change material-based narrowband perfect absorber

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-01-01 DOI:10.1117/1.JNP.17.016004
D. Tripathi, R. Hegde
{"title":"Optimally designed tunable phase change material-based narrowband perfect absorber","authors":"D. Tripathi, R. Hegde","doi":"10.1117/1.JNP.17.016004","DOIUrl":null,"url":null,"abstract":"Abstract. In recent years, there has been a growing interest in active metasurfaces. In particular, phase change material-based metasurfaces offering all-optical reconfigurability are being explored. Despite recent progress, further improvement in device reconfiguration energies and optical contrast achievable between the amorphous and crystalline states is desirable. In this work, we demonstrate that using a mirror-backed chalcogenide-based narrowband perfect absorber metasurface can significantly improve the device’s reflection contrast at much lower energies than its mirrorless case. By considering a GST225 metasurface operating in the near IR, our systematic numerical study finds improved reflection contrast (up to −32  dB, Q-factor 19.22 compared with 9.59 dB, Q-factor 11 for the mirrorless case). For the mirrored case, the thermal study finds faster crystallization (up to 6 times) at reduced reconfiguration thresholds (72 times lower) compared with the mirrorless case. This results in a more than 2 orders of magnitude higher device figure of merit [defined as the change in reflection contrast (in dB) to a corresponding change in optical energy (in nJ)] compared with the mirrorless case. The results are promising for high-performance metasurfaces at reduced switching energies.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.JNP.17.016004","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract. In recent years, there has been a growing interest in active metasurfaces. In particular, phase change material-based metasurfaces offering all-optical reconfigurability are being explored. Despite recent progress, further improvement in device reconfiguration energies and optical contrast achievable between the amorphous and crystalline states is desirable. In this work, we demonstrate that using a mirror-backed chalcogenide-based narrowband perfect absorber metasurface can significantly improve the device’s reflection contrast at much lower energies than its mirrorless case. By considering a GST225 metasurface operating in the near IR, our systematic numerical study finds improved reflection contrast (up to −32  dB, Q-factor 19.22 compared with 9.59 dB, Q-factor 11 for the mirrorless case). For the mirrored case, the thermal study finds faster crystallization (up to 6 times) at reduced reconfiguration thresholds (72 times lower) compared with the mirrorless case. This results in a more than 2 orders of magnitude higher device figure of merit [defined as the change in reflection contrast (in dB) to a corresponding change in optical energy (in nJ)] compared with the mirrorless case. The results are promising for high-performance metasurfaces at reduced switching energies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于可调谐相变材料的窄带完美吸收体的优化设计
摘要近年来,人们对活性超表面越来越感兴趣。特别是,基于相变材料的超表面提供了全光学可重构性,目前正在探索中。尽管最近取得了进展,但在非晶态和晶态之间可实现的器件重构能量和光学对比度方面的进一步改进是可取的。在这项工作中,我们证明了使用基于镜背硫族化物的窄带完美吸收体超表面可以在比无镜情况低得多的能量下显著提高器件的反射对比度。通过考虑在近红外中操作的GST225超表面,我们的系统数值研究发现反射对比度得到了改善(高达−32  dB,Q因子19.22,而对于无反光镜的情况,Q因子为9.59dB,11)。对于镜像情况,热研究发现,与无镜像情况相比,在降低的重新配置阈值(低72倍)下,结晶速度更快(高达6倍)。这导致与无反光镜的情况相比,器件品质因数[定义为反射对比度(以dB为单位)的变化与光能(以nJ为单位)相应的变化]高出2个数量级以上。该结果有望在降低开关能量的情况下用于高性能超表面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1