A Systematic Review of Deep Learning Methods Applied to Ocular Images

Oscar Julián Perdomo Charry, Fabio Augusto González Osorio
{"title":"A Systematic Review of Deep Learning Methods Applied to Ocular Images","authors":"Oscar Julián Perdomo Charry, Fabio Augusto González Osorio","doi":"10.18359/rcin.4242","DOIUrl":null,"url":null,"abstract":"Artificial intelligence is having an important effect on different areas of medicine, and ophthalmology has not been the exception. In particular, deep learning methods have been applied successfully to the detection of clinical signs and the classification of ocular diseases. This represents a great potential to increase the number of people correctly diagnosed. In ophthalmology, deep learning methods have primarily been applied to eye fundus images and optical coherence tomography. On the one hand, these methods have achieved an outstanding performance in the detection of ocular diseases such as: diabetic retinopathy, glaucoma, diabetic macular degeneration and age-related macular degeneration.  On the other hand, several worldwide challenges have shared big eye imaging datasets with segmentation of part of the eyes, clinical signs and the ocular diagnostic performed by experts. In addition, these methods are breaking the stigma of black-box models, with the delivering of interpretable clinically information. This review provides an overview of the state-of-the-art deep learning methods used in ophthalmic images, databases and potential challenges for ocular diagnosis","PeriodicalId":31201,"journal":{"name":"Ciencia e Ingenieria Neogranadina","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ciencia e Ingenieria Neogranadina","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18359/rcin.4242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Artificial intelligence is having an important effect on different areas of medicine, and ophthalmology has not been the exception. In particular, deep learning methods have been applied successfully to the detection of clinical signs and the classification of ocular diseases. This represents a great potential to increase the number of people correctly diagnosed. In ophthalmology, deep learning methods have primarily been applied to eye fundus images and optical coherence tomography. On the one hand, these methods have achieved an outstanding performance in the detection of ocular diseases such as: diabetic retinopathy, glaucoma, diabetic macular degeneration and age-related macular degeneration.  On the other hand, several worldwide challenges have shared big eye imaging datasets with segmentation of part of the eyes, clinical signs and the ocular diagnostic performed by experts. In addition, these methods are breaking the stigma of black-box models, with the delivering of interpretable clinically information. This review provides an overview of the state-of-the-art deep learning methods used in ophthalmic images, databases and potential challenges for ocular diagnosis
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用于眼部图像的深度学习方法的系统综述
人工智能在医学的不同领域发挥着重要作用,眼科也不例外。特别是,深度学习方法已成功应用于临床体征的检测和眼部疾病的分类。这代表着增加正确诊断人数的巨大潜力。在眼科,深度学习方法主要应用于眼底图像和光学相干断层扫描。一方面,这些方法在糖尿病视网膜病变、青光眼、糖尿病黄斑变性和年龄相关性黄斑变性等眼部疾病的检测中取得了突出的效果。另一方面,一些世界性的挑战已经共享了大眼睛成像数据集,包括部分眼睛的分割、临床体征和专家进行的眼部诊断。此外,这些方法正在打破黑盒模型的耻辱,提供可解释的临床信息。这篇综述概述了眼科图像、数据库中使用的最先进的深度学习方法以及眼科诊断的潜在挑战
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
9
审稿时长
20 weeks
期刊最新文献
Editorial Exploración del efecto de la integración de herramientas con agentividad en ambientes de aprendizaje Performance of a Series of Polishing Ponds in the Treatment of Sanitary Sewage Sistemas de detección y prevención de intrusos Análisis de la huella hídrica azul como indicador de sostenibilidad en pymes del Valle del Cauca
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1