Operando photoelectron spectromicroscopy of nanodevices: Correlating the surface chemistry and transport in SnO2 nanowire chemiresistors

IF 1.8 4区 物理与天体物理 Q2 SPECTROSCOPY Journal of Electron Spectroscopy and Related Phenomena Pub Date : 2023-07-01 DOI:10.1016/j.elspec.2023.147366
Andrei Kolmakov , J. Trey Diulus , Kurt D. Benkstein , Steve Semancik , Majid Kazemian , Matteo Amati , Maya Kiskinova , Luca Gregoratti
{"title":"Operando photoelectron spectromicroscopy of nanodevices: Correlating the surface chemistry and transport in SnO2 nanowire chemiresistors","authors":"Andrei Kolmakov ,&nbsp;J. Trey Diulus ,&nbsp;Kurt D. Benkstein ,&nbsp;Steve Semancik ,&nbsp;Majid Kazemian ,&nbsp;Matteo Amati ,&nbsp;Maya Kiskinova ,&nbsp;Luca Gregoratti","doi":"10.1016/j.elspec.2023.147366","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>With size reduction of active elements in microelectronics to tens of nanometers and below, the effect of surface and interface properties on overall device performance becomes crucial. High resolution spectroscopic and imaging techniques provide a metrological route for characterization of these properties relevant to </span>device diagnostics<span> and failure analysis. With its roughly 100 nm spatial resolution, superior surface sensitivity, and approximately 200 meV spectral resolution, scanning photoelectron<span> microscopy (SPEM) stands out as a comprehensive tool to access the surface/interface composition of nanodevices, as well to provide chemical state designations and materials property evolutions upon treatment by thermal, electrical, chemical, radiative and other stimuli. Here we present a SPEM-on-device setup that combines X-ray spectromicroscopy with advanced NIST microhotplate technology to demonstrate new combined analytical and electrical measurements capabilities of this metrology platform for </span></span></span><em>operando</em> nanodevice characterization. Using model integrated SnO<sub>2</sub><span> nanowire (NW) chemiresistor devices, the chemically induced alterations in the chemical state of the nanowire surface are correlated to the observed conductance changes, thus directly testing the receptor and transduction mechanisms for SnO</span><sub>2</sub> NW conductometric chemical sensors.</p></div>","PeriodicalId":15726,"journal":{"name":"Journal of Electron Spectroscopy and Related Phenomena","volume":"266 ","pages":"Article 147366"},"PeriodicalIF":1.8000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electron Spectroscopy and Related Phenomena","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S036820482300083X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

With size reduction of active elements in microelectronics to tens of nanometers and below, the effect of surface and interface properties on overall device performance becomes crucial. High resolution spectroscopic and imaging techniques provide a metrological route for characterization of these properties relevant to device diagnostics and failure analysis. With its roughly 100 nm spatial resolution, superior surface sensitivity, and approximately 200 meV spectral resolution, scanning photoelectron microscopy (SPEM) stands out as a comprehensive tool to access the surface/interface composition of nanodevices, as well to provide chemical state designations and materials property evolutions upon treatment by thermal, electrical, chemical, radiative and other stimuli. Here we present a SPEM-on-device setup that combines X-ray spectromicroscopy with advanced NIST microhotplate technology to demonstrate new combined analytical and electrical measurements capabilities of this metrology platform for operando nanodevice characterization. Using model integrated SnO2 nanowire (NW) chemiresistor devices, the chemically induced alterations in the chemical state of the nanowire surface are correlated to the observed conductance changes, thus directly testing the receptor and transduction mechanisms for SnO2 NW conductometric chemical sensors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米器件的操作光电子能谱显微镜:SnO2纳米线化学电阻中的表面化学和传输的相关性
随着微电子中活性元件的尺寸减小到几十纳米及以下,表面和界面特性对器件整体性能的影响变得至关重要。高分辨率光谱和成像技术为表征与设备诊断和故障分析相关的这些特性提供了计量途径。扫描光电子显微镜(SPEM)具有大约100纳米的空间分辨率,优越的表面灵敏度和大约200 meV的光谱分辨率,是一种全面的工具,可以访问纳米器件的表面/界面组成,以及在热、电、化学、辐射和其他刺激处理后提供化学状态名称和材料性质演变。在这里,我们提出了一种SPEM-on-device装置,将x射线光谱显微镜与先进的NIST微热板技术相结合,以展示该计量平台用于operando纳米器件表征的新的综合分析和电气测量能力。利用模型集成的SnO2纳米线(NW)化学电阻器件,化学诱导的纳米线表面化学状态的改变与观察到的电导变化相关,从而直接测试SnO2 NW电导化学传感器的受体和转导机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
64
审稿时长
60 days
期刊介绍: The Journal of Electron Spectroscopy and Related Phenomena publishes experimental, theoretical and applied work in the field of electron spectroscopy and electronic structure, involving techniques which use high energy photons (>10 eV) or electrons as probes or detected particles in the investigation.
期刊最新文献
Theory of circular dichroism in angle- and spin-resolved photoemission from the surface state on Bi(111) Atomic data, and ionization cross-sections by electron impact of tungsten ions, W LXV Elucidating the structure of amorphous-carbon films containing carbide and non-carbide-forming metals Encoder–decoder neural networks in interpretation of X-ray spectra Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1