{"title":"Modeling footing resting on anisotropic sand using material point method","authors":"Liu Gao , Dong Liao , Pin-Qiang Mo","doi":"10.1016/j.jrmge.2023.02.004","DOIUrl":null,"url":null,"abstract":"<div><p>Sand typically exhibits anisotropic internal structure which may significantly influence its mechanical behavior. The material point method (MPM) can eliminate mesh distortion and thus is suitable for investigating geotechnical problems with large deformation. In this study, an advanced anisotropic critical state theory (ACST)-based soil model is implemented in MPM to study the response of strip footing resting on anisotropic sand. The capability of the model is verified by simulating several element tests and strip footing tests with different soil densities and fabric bedding plane orientations. For the footing problem with a vertical load, as the fabric bedding plane orientation increases, the bearing capacity decreases and its corresponding settlement increases. The failure pattern becomes asymmetrical when the bedding plane orientation or the loading direction is inclined. A comparison between the simulation results predicted by the anisotropic and isotropic models is made, which demonstrates that neglecting the fabric anisotropy may lead to the overestimation of the bearing capacity.</p></div>","PeriodicalId":54219,"journal":{"name":"Journal of Rock Mechanics and Geotechnical Engineering","volume":"15 12","pages":"Pages 3271-3290"},"PeriodicalIF":9.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674775523000616/pdfft?md5=3bce52249c33533dc4bc19e98d616795&pid=1-s2.0-S1674775523000616-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rock Mechanics and Geotechnical Engineering","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674775523000616","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Sand typically exhibits anisotropic internal structure which may significantly influence its mechanical behavior. The material point method (MPM) can eliminate mesh distortion and thus is suitable for investigating geotechnical problems with large deformation. In this study, an advanced anisotropic critical state theory (ACST)-based soil model is implemented in MPM to study the response of strip footing resting on anisotropic sand. The capability of the model is verified by simulating several element tests and strip footing tests with different soil densities and fabric bedding plane orientations. For the footing problem with a vertical load, as the fabric bedding plane orientation increases, the bearing capacity decreases and its corresponding settlement increases. The failure pattern becomes asymmetrical when the bedding plane orientation or the loading direction is inclined. A comparison between the simulation results predicted by the anisotropic and isotropic models is made, which demonstrates that neglecting the fabric anisotropy may lead to the overestimation of the bearing capacity.
期刊介绍:
The Journal of Rock Mechanics and Geotechnical Engineering (JRMGE), overseen by the Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, is dedicated to the latest advancements in rock mechanics and geotechnical engineering. It serves as a platform for global scholars to stay updated on developments in various related fields including soil mechanics, foundation engineering, civil engineering, mining engineering, hydraulic engineering, petroleum engineering, and engineering geology. With a focus on fostering international academic exchange, JRMGE acts as a conduit between theoretical advancements and practical applications. Topics covered include new theories, technologies, methods, experiences, in-situ and laboratory tests, developments, case studies, and timely reviews within the realm of rock mechanics and geotechnical engineering.