Incidence of solar cycle 24 in nighttime foF2 long-term trends for two Japanese ionospheric stations

IF 0.5 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Studia Geophysica et Geodaetica Pub Date : 2020-06-06 DOI:10.1007/s11200-021-0584-9
Blas F. de Haro Barbás, Ana G. Elias, Mariano Fagre, Bruno S. Zossi
{"title":"Incidence of solar cycle 24 in nighttime foF2 long-term trends for two Japanese ionospheric stations","authors":"Blas F. de Haro Barbás,&nbsp;Ana G. Elias,&nbsp;Mariano Fagre,&nbsp;Bruno S. Zossi","doi":"10.1007/s11200-021-0584-9","DOIUrl":null,"url":null,"abstract":"<p>Ionospheric long-term trend studies are of great scientific interest since they contribute to the more general and controversial climatic change issue. In this paper we analyze the effect of the inclusion of solar cycle 24 on estimation of the nighttime trend of the critical frequency of ionospheric F2 layer (foF2) for Kokubunji (35.7°N, 139.5°E) and Wakkanai (45.4°N, 141.7°E), two mid-latitude Japanese stations. Even though during the night recombination and transport processes prevail, ionization still depends directly on solar activity, so it must be filtered out before any long-term variation assessment. As usual, filtering is done considering the residuals of the regressions between foF2 with the solar radio flux at 10.7 cm (F10.7) and a ratio between the core and wing line intensities of the emitted ionized Magnesium doublet (Mg II index). Similar to the case of daytime foF2 values, night trends become less negative when solar cycle 24 is included since foF2 residuals systematically exceed the values predicted by F10.7 or Mg II from 2009 onwards. This effect is weaker in the case of Mg II, which is expected to be a better solar extreme ultraviolet (EUV) proxy than F10.7 in the case of the solar radiation involved in the F2 layer ionization. A plausible cause for cycle 24 incidence in the trend may be due to the use of F10.7 or Mg II as EUV proxy to filter solar activity. It is because they both seem to be inaccurate for filtering purposes since the last deep minimum in about 2008. Otherwise, there could be a real physical cause for this observation.</p>","PeriodicalId":22001,"journal":{"name":"Studia Geophysica et Geodaetica","volume":"64 3","pages":"407 - 418"},"PeriodicalIF":0.5000,"publicationDate":"2020-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11200-021-0584-9","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geophysica et Geodaetica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s11200-021-0584-9","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 7

Abstract

Ionospheric long-term trend studies are of great scientific interest since they contribute to the more general and controversial climatic change issue. In this paper we analyze the effect of the inclusion of solar cycle 24 on estimation of the nighttime trend of the critical frequency of ionospheric F2 layer (foF2) for Kokubunji (35.7°N, 139.5°E) and Wakkanai (45.4°N, 141.7°E), two mid-latitude Japanese stations. Even though during the night recombination and transport processes prevail, ionization still depends directly on solar activity, so it must be filtered out before any long-term variation assessment. As usual, filtering is done considering the residuals of the regressions between foF2 with the solar radio flux at 10.7 cm (F10.7) and a ratio between the core and wing line intensities of the emitted ionized Magnesium doublet (Mg II index). Similar to the case of daytime foF2 values, night trends become less negative when solar cycle 24 is included since foF2 residuals systematically exceed the values predicted by F10.7 or Mg II from 2009 onwards. This effect is weaker in the case of Mg II, which is expected to be a better solar extreme ultraviolet (EUV) proxy than F10.7 in the case of the solar radiation involved in the F2 layer ionization. A plausible cause for cycle 24 incidence in the trend may be due to the use of F10.7 or Mg II as EUV proxy to filter solar activity. It is because they both seem to be inaccurate for filtering purposes since the last deep minimum in about 2008. Otherwise, there could be a real physical cause for this observation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
日本两个电离层站夜间太阳周期24的发生率
电离层长期趋势研究具有重大的科学意义,因为它们有助于研究更普遍和有争议的气候变化问题。本文分析了太阳周期24对日本中纬度国分二站(35.7°N, 139.5°E)和Wakkanai站(45.4°N, 141.7°E)电离层F2层临界频率(foF2)夜间趋势的影响。即使在夜间重组和传输过程盛行,电离仍然直接依赖于太阳活动,因此必须在任何长期变化评估之前过滤掉它。与往常一样,考虑foF2与太阳射电通量在10.7 cm (F10.7)之间的回归的残差以及发射的电离镁重态的核心和翼线强度之比(Mg II指数)进行滤波。与白天foF2值的情况类似,当太阳活动周期24包括在内时,夜间趋势变得不那么消极,因为从2009年起,foF2残余量系统地超过了F10.7或Mg II预测的值。这种效应在Mg II的情况下较弱,在涉及F2层电离的太阳辐射的情况下,Mg II有望比F10.7更好地代表太阳极紫外线(EUV)。第24周期在趋势中发生的一个合理原因可能是由于使用F10.7或Mg II作为EUV代理来过滤太阳活动。这是因为自2008年左右的上一次深度最小值以来,它们似乎都不适合过滤目的。否则,这种观察结果可能有真正的物理原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Studia Geophysica et Geodaetica
Studia Geophysica et Geodaetica 地学-地球化学与地球物理
CiteScore
1.90
自引率
0.00%
发文量
8
审稿时长
6-12 weeks
期刊介绍: Studia geophysica et geodaetica is an international journal covering all aspects of geophysics, meteorology and climatology, and of geodesy. Published by the Institute of Geophysics of the Academy of Sciences of the Czech Republic, it has a long tradition, being published quarterly since 1956. Studia publishes theoretical and methodological contributions, which are of interest for academia as well as industry. The journal offers fast publication of contributions in regular as well as topical issues.
期刊最新文献
Present-day crustal deformation based on an interpolated GPS velocity field in the collision zone of the Arabia-Eurasia tectonic plates Effect of the 2021 Cumbre Vieja eruption on precipitable water vapor and atmospheric particles analysed using GNSS and remote sensing Geophysical structure of a local area in the lunar Oceanus Procellarum region investigated using the gravity gradient method Estimation of the minimal detectable horizontal acceleration of GNSS CORS The area of rhumb polygons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1