The Compounds of Tuna-Shredded (Thunnus sp.) Fortified Banana Blossom Extracts’ Antioxidant Activity and Xanthine Oxidase Enzyme Inhibition Capacity: An In Vitro-In Silico Study
H. Djamaludin, H. Hardoko, M. Dailami, Vivi Nurhadianty, Mohammad Sholeh Uluwwi, Novaldo Yuri Muhammad, Tristany Brighton Jorghi
{"title":"The Compounds of Tuna-Shredded (Thunnus sp.) Fortified Banana Blossom Extracts’ Antioxidant Activity and Xanthine Oxidase Enzyme Inhibition Capacity: An In Vitro-In Silico Study","authors":"H. Djamaludin, H. Hardoko, M. Dailami, Vivi Nurhadianty, Mohammad Sholeh Uluwwi, Novaldo Yuri Muhammad, Tristany Brighton Jorghi","doi":"10.22146/ijc.81448","DOIUrl":null,"url":null,"abstract":"Tuna is one of the fish source of nutrition for humans because it contains high-quality protein and omega-3 fatty acids, which are beneficial for health. Tuna can be processed into various products, such as tuna-shredded. But it still has a drawback, i.e., the lower-fiber content. To enrich the fiber of tuna-shredded, fortification with banana blossoms can be developed as functional food such as preventing gout arthritis. The aims of this study were to develop a diversified product of tuna-shredded fortified banana blossoms and to determine the antioxidant activity in vitro and anti-arthritis gout through inhibition of the xanthine oxidase (XO) enzyme in silico. The method used was a simple, completely randomized design. The formulation of tuna-shredded used fortification and active compounds analyzed by LC-HRMS. The antioxidant activity was analyzed by the DPPH. Inhibition of the XO enzyme was analyzed by molecular docking in silico. The results showed that tuna-shredded extract contained 32 compounds, which had total phenolic was 0.00134 mg GAE/g, total flavonoid was 0.0006670 mg QE/g, and IC50 was 4.38 ppm. Ferulic acid had the potential to inhibit the XO enzyme with binding affinity was -9.70 kcal/mol through hydrogen bonds and hydrophobic interactions.","PeriodicalId":13515,"journal":{"name":"Indonesian Journal of Chemistry","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijc.81448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Tuna is one of the fish source of nutrition for humans because it contains high-quality protein and omega-3 fatty acids, which are beneficial for health. Tuna can be processed into various products, such as tuna-shredded. But it still has a drawback, i.e., the lower-fiber content. To enrich the fiber of tuna-shredded, fortification with banana blossoms can be developed as functional food such as preventing gout arthritis. The aims of this study were to develop a diversified product of tuna-shredded fortified banana blossoms and to determine the antioxidant activity in vitro and anti-arthritis gout through inhibition of the xanthine oxidase (XO) enzyme in silico. The method used was a simple, completely randomized design. The formulation of tuna-shredded used fortification and active compounds analyzed by LC-HRMS. The antioxidant activity was analyzed by the DPPH. Inhibition of the XO enzyme was analyzed by molecular docking in silico. The results showed that tuna-shredded extract contained 32 compounds, which had total phenolic was 0.00134 mg GAE/g, total flavonoid was 0.0006670 mg QE/g, and IC50 was 4.38 ppm. Ferulic acid had the potential to inhibit the XO enzyme with binding affinity was -9.70 kcal/mol through hydrogen bonds and hydrophobic interactions.
期刊介绍:
Indonesian Journal of Chemistry is a peer-reviewed, open access journal that publishes original research articles, review articles, as well as short communication in all areas of chemistry, including educational chemistry, applied chemistry, and chemical engineering.