Drugs Designed for Degradation in the Environment Post Use

IF 1.1 Q3 CHEMISTRY, MULTIDISCIPLINARY Current Green Chemistry Pub Date : 2023-03-01 DOI:10.2174/2213346110666230301102856
M. Sydnes
{"title":"Drugs Designed for Degradation in the Environment Post Use","authors":"M. Sydnes","doi":"10.2174/2213346110666230301102856","DOIUrl":null,"url":null,"abstract":"\n\nAccumulation of pharmaceuticals in the environment due to slow mineralization in nature is a growing pollution problem affecting organisms and animals and humans in the long run. When pharmaceuticals are antibiotics, the problem is twofold since the buildup of such compounds in the environment also fuels the development of antibiotic resistance. Building weak structures of biologically active compounds is one way of facilitating the quicker degradation of the drug in the environment after the drug has been excreted from the patient subsequently performing its function. The emergence of the process of photodegradation post-excretion of the pharmaceutical from the patient is one method that is under development, which will facilitate a quicker breakdown of the drug. Another method to enable this is hydrolysis, which is pH-dependent and involves making up of compounds that hydrolyze quicker under certain pH conditions. To enable the ongoing efforts in making pharmaceuticals to be more benign, this focused review showcases examples from research on antimicrobial agents and anticancer agents.\n","PeriodicalId":10856,"journal":{"name":"Current Green Chemistry","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Green Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2213346110666230301102856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Accumulation of pharmaceuticals in the environment due to slow mineralization in nature is a growing pollution problem affecting organisms and animals and humans in the long run. When pharmaceuticals are antibiotics, the problem is twofold since the buildup of such compounds in the environment also fuels the development of antibiotic resistance. Building weak structures of biologically active compounds is one way of facilitating the quicker degradation of the drug in the environment after the drug has been excreted from the patient subsequently performing its function. The emergence of the process of photodegradation post-excretion of the pharmaceutical from the patient is one method that is under development, which will facilitate a quicker breakdown of the drug. Another method to enable this is hydrolysis, which is pH-dependent and involves making up of compounds that hydrolyze quicker under certain pH conditions. To enable the ongoing efforts in making pharmaceuticals to be more benign, this focused review showcases examples from research on antimicrobial agents and anticancer agents.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计用于使用后在环境中降解的药物
从长远来看,由于自然界矿化缓慢,药物在环境中积累是一个日益严重的污染问题,影响着生物体、动物和人类。当药物是抗生素时,问题是双重的,因为这种化合物在环境中的积累也助长了抗生素耐药性的发展。建立生物活性化合物的弱结构是在药物从患者体内排出并随后发挥其功能后促进药物在环境中更快降解的一种方式。药物从患者排泄后光降解过程的出现是一种正在开发的方法,这将有助于药物更快地分解。另一种实现这一点的方法是水解,这是pH依赖性的,涉及在特定pH条件下更快水解的化合物的组成。为了使正在进行的制药工作更加良性,这篇重点综述展示了抗菌剂和抗癌剂研究的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Green Chemistry
Current Green Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
4.30
自引率
13.60%
发文量
6
期刊最新文献
A Review on Environment-friendly Protocol for the Synthesis of Pyrazole Derivative Green and Convenient Synthesis of Pharmaceutically Active Mono and Bis-dihydroquinazolines via a One-pot Multicomponent Reaction Under Sulfamic Acid Catalysis Lactic Acid Bacteria As Biological Control Agent For Controlling Aspergillus Growth and Aflatoxin Production: A Review Plastic Waste Valorization: Prospects for Green Hydrogen Production Green Graphene is a Boon for Managing Triple-negative Breast Cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1