{"title":"Studies on the structure and conformational flexibility of secondary structures in amyloid beta — A quantum chemical study","authors":"M. Ganesan, S. Paranthaman","doi":"10.1142/s0219633620500145","DOIUrl":null,"url":null,"abstract":"Density functional theory (DFT) calculations are performed to study the conformational flexibility of secondary structures in amyloid beta (A[Formula: see text]) polypeptide. In DFT, M06-2X/6-31[Formula: see text]G(d, p) method is used to optimize the secondary structures of 2LFM and 2BEG in gas phase and in solution phase. Our calculations show that the secondary structures are energetically more stable in solution phase than in gas phase. This is due to the presence of strong solvent interaction with the secondary structures considered in this study. Among the backbone [Formula: see text] and [Formula: see text] dihedral angles, [Formula: see text] varies significantly in sheet structure. This is due to the absence of intermolecular hydrogen bond (H-bond) interactions in sheets considered in this study. Our calculations show that the conformational transition of helix/coil to sheet or vice-versa is due to the floppiness of the amino acid residues. This is observed from the Ramachandran map of the studied secondary structures. Further, it is noted that the intramolecular H-bond interactions play a significant role in the conformational transition of secondary structures of A[Formula: see text].","PeriodicalId":49976,"journal":{"name":"Journal of Theoretical & Computational Chemistry","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/s0219633620500145","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical & Computational Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219633620500145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 3
Abstract
Density functional theory (DFT) calculations are performed to study the conformational flexibility of secondary structures in amyloid beta (A[Formula: see text]) polypeptide. In DFT, M06-2X/6-31[Formula: see text]G(d, p) method is used to optimize the secondary structures of 2LFM and 2BEG in gas phase and in solution phase. Our calculations show that the secondary structures are energetically more stable in solution phase than in gas phase. This is due to the presence of strong solvent interaction with the secondary structures considered in this study. Among the backbone [Formula: see text] and [Formula: see text] dihedral angles, [Formula: see text] varies significantly in sheet structure. This is due to the absence of intermolecular hydrogen bond (H-bond) interactions in sheets considered in this study. Our calculations show that the conformational transition of helix/coil to sheet or vice-versa is due to the floppiness of the amino acid residues. This is observed from the Ramachandran map of the studied secondary structures. Further, it is noted that the intramolecular H-bond interactions play a significant role in the conformational transition of secondary structures of A[Formula: see text].
期刊介绍:
The Journal of Theoretical and Computational Chemistry (JTCC) is an international interdisciplinary journal aimed at providing comprehensive coverage on the latest developments and applications of research in the ever-expanding field of theoretical and computational chemistry.
JTCC publishes regular articles and reviews on new methodology, software, web server and database developments. The applications of existing theoretical and computational methods which produce significant new insights into important problems are also welcomed. Papers reporting joint computational and experimental investigations are encouraged. The journal will not consider manuscripts reporting straightforward calculations of the properties of molecules with existing software packages without addressing a significant scientific problem.
Areas covered by the journal include molecular dynamics, computer-aided molecular design, modeling effects of mutation on stability and dynamics of macromolecules, quantum mechanics, statistical mechanics and other related topics.