Corporate Carbon Footprint: A Machine Learning Predictive Model for Unreported Data

SSRN Pub Date : 2022-09-21 DOI:10.2139/ssrn.4038436
T. Heurtebize, Frederic Chen, François Soupé, Raul Leote de Carvalho
{"title":"Corporate Carbon Footprint: A Machine Learning Predictive Model for Unreported Data","authors":"T. Heurtebize, Frederic Chen, François Soupé, Raul Leote de Carvalho","doi":"10.2139/ssrn.4038436","DOIUrl":null,"url":null,"abstract":"The authors propose a model based on statistical learning techniques to predict unreported corporate greenhouse gas emissions that generates considerably better results than existing approaches. The model uses one linear learner and one nonlinear learner only, which reduces its complexity to the minimum required. An iterative approach to detecting and correcting data significantly improves the model predictions. Unlike mainstream approaches, which tend to construct one model for each industry, we construct one single global model that uses industry as a factor. This addresses the problem of lack of breadth or lack of reported data in some sectors and generates practical results even for industries where other approaches have failed. We show results for Scope 1 and Scope 2 corporate carbon emissions. Adapting the framework to Scope 3 will be the focus of a future article.","PeriodicalId":74863,"journal":{"name":"SSRN","volume":"3 1","pages":"36 - 54"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SSRN","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.4038436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The authors propose a model based on statistical learning techniques to predict unreported corporate greenhouse gas emissions that generates considerably better results than existing approaches. The model uses one linear learner and one nonlinear learner only, which reduces its complexity to the minimum required. An iterative approach to detecting and correcting data significantly improves the model predictions. Unlike mainstream approaches, which tend to construct one model for each industry, we construct one single global model that uses industry as a factor. This addresses the problem of lack of breadth or lack of reported data in some sectors and generates practical results even for industries where other approaches have failed. We show results for Scope 1 and Scope 2 corporate carbon emissions. Adapting the framework to Scope 3 will be the focus of a future article.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
企业碳足迹:未报告数据的机器学习预测模型
作者提出了一个基于统计学习技术的模型来预测未报告的企业温室气体排放,该模型比现有方法产生了更好的结果。该模型只使用一个线性学习器和一个非线性学习器,这将其复杂性降低到了最低要求。检测和校正数据的迭代方法显著改进了模型预测。与主流方法不同,主流方法倾向于为每个行业构建一个模型,我们构建一个单一的全球模型,将行业作为一个因素。这解决了一些部门缺乏广度或报告数据的问题,甚至对其他方法失败的行业也产生了实际效果。我们展示了范围1和范围2企业碳排放的结果。使框架适应范围3将是今后文章的重点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stocks as a Hedge against Inflation: Does Corporate Profitability Keep Up with Inflation? How Useful Is a Prospectus in Identifying Greenwashing versus True ESG Funds? Beyond Direct Indexing: Dynamic Direct Long-Short Investing The Hidden Cost in Costless Put-Spread Collars: Rebalance Timing Luck Investing in Carbon Credits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1