Confinement factor and carrier recombination of InGaAsP/InP quantum well lasers

IF 1 4区 材料科学 Journal of Ovonic Research Pub Date : 2022-09-09 DOI:10.15251/jor.2022.184.617
E. M. Salman, M. Jobayr, H. K. Hassun
{"title":"Confinement factor and carrier recombination of InGaAsP/InP quantum well lasers","authors":"E. M. Salman, M. Jobayr, H. K. Hassun","doi":"10.15251/jor.2022.184.617","DOIUrl":null,"url":null,"abstract":"Low-dimensional materials have attracted significant attention in developing and enhancing the performance of quantum well lasers due to their extraordinary unique properties. The optical confinement factor is one of the most effective parameters for evaluating the optimal performance of a semiconductor laser diode when used to measure the optical gain and current threshold. The optical confinement factor and the radiative recombination of single quantum wells (SQW) and multi-quantum wells (MQW) for InGaAsP/InP have been theoretically studied using both radiative and Auger coefficients. Quantum well width, barrier width, and number of quantum wells were all looked at to see how these things changed the optical confinement factor and radiative and non-radiative recombination coefficients for multi-quantum well structures. It was found that the optical confinement factor increases with an increase in the number of wells. The largest value of the optical confinement factor was determined when the number of wells was five at any width. The optical confinement coefficient was 0.23, 0.216, and 0.203 for the number of wells (3, 4, and 5) and well width (27, 19.5, and 15) nm, respectively. In addition, the radiative recombination coefficient increases with the width of the quantum well after 5 nm, and it is much bigger than that of its bulk counterparts.","PeriodicalId":54394,"journal":{"name":"Journal of Ovonic Research","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ovonic Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15251/jor.2022.184.617","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Low-dimensional materials have attracted significant attention in developing and enhancing the performance of quantum well lasers due to their extraordinary unique properties. The optical confinement factor is one of the most effective parameters for evaluating the optimal performance of a semiconductor laser diode when used to measure the optical gain and current threshold. The optical confinement factor and the radiative recombination of single quantum wells (SQW) and multi-quantum wells (MQW) for InGaAsP/InP have been theoretically studied using both radiative and Auger coefficients. Quantum well width, barrier width, and number of quantum wells were all looked at to see how these things changed the optical confinement factor and radiative and non-radiative recombination coefficients for multi-quantum well structures. It was found that the optical confinement factor increases with an increase in the number of wells. The largest value of the optical confinement factor was determined when the number of wells was five at any width. The optical confinement coefficient was 0.23, 0.216, and 0.203 for the number of wells (3, 4, and 5) and well width (27, 19.5, and 15) nm, respectively. In addition, the radiative recombination coefficient increases with the width of the quantum well after 5 nm, and it is much bigger than that of its bulk counterparts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
InGaAsP/InP量子阱激光器的约束因子与载流子复合
低维材料由于其独特的性能,在量子阱激光器的发展和性能提升方面受到了广泛的关注。在测量半导体激光二极管的光增益和电流阈值时,光约束因子是评价半导体激光二极管最佳性能的最有效参数之一。利用辐射和奥歇系数对InGaAsP/InP的光约束因子和单量子阱和多量子阱的辐射复合进行了理论研究。我们观察了量子阱宽度、势垒宽度和量子阱数量,以观察这些因素如何改变多量子阱结构的光约束因子、辐射和非辐射复合系数。结果表明,光约束因子随阱数的增加而增加。当任意宽度的井数为5个时,光约束因子的最大值被确定。孔数(3、4、5)和孔宽(27、19.5、15)nm的光约束系数分别为0.23、0.216和0.203。此外,在5 nm之后,辐射复合系数随量子阱宽度的增加而增加,且远大于块状量子阱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Ovonic Research
Journal of Ovonic Research Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
1.60
自引率
20.00%
发文量
77
期刊介绍: Journal of Ovonic Research (JOR) appears with six issues per year and is open to the reviews, papers, short communications and breakings news inserted as Short Notes, in the field of ovonic (mainly chalcogenide) materials for memories, smart materials based on ovonic materials (combinations of various elements including chalcogenides), materials with nano-structures based on various alloys, as well as semiconducting materials and alloys based on amorphous silicon, germanium, carbon in their various nanostructured forms, either simple or doped/alloyed with hydrogen, fluorine, chlorine and other elements of high interest for applications in electronics and optoelectronics. Papers on minerals with possible applications in electronics and optoelectronics are encouraged.
期刊最新文献
Modified nonlinear ion drift model for TiO2 memristor: a temperature dependent study Electrochemical performance of rice grains like high Mn-doped anatase TiO2 nanoparticles as lithium-ion batteries electrode material Probing optoelectronic and thermoelectric properties of double perovskite halides Li2CuInY6 (Y = Cl, Br, I) for energy conversion applications Absorber layer improvement and performance analysis of CIGS thin-film solar cell Investigations on synthesis, growth and characterisations of a NLO material: L-Tryptophanium phosphite (LTP)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1