{"title":"Experimental study on continuous firing vibration response of the typical machine guns under different ground conditions","authors":"Heng-lin Liu, Longqin He, Cheng Xu","doi":"10.21595/jve.2023.22834","DOIUrl":null,"url":null,"abstract":"In order to study the influence of ground conditions on the continuous firing vibration response of typical machine gun, and find out under which conditions the machine gun is most stable. A high-speed photography method was used to measure the motion of multiple parts. The motion curve of each part in the shooting process are obtained, and the projectile dispersion are recorded. According to the results, the motion characteristics of each part is analyzed. The pitching and translational quasi-periodic motions of the whole gun under different ground conditions are compared by synthesizing the motion data of various parts. The working modes of gun tripod under different ground conditions are discussed, and are compared according to the corresponding projectile dispersion. The result show that, in quasi-periodic pitching motion, the upward pitching motion response of the gun under the condition of cement ground is large, the ability to restore the initial position is poor, and the corresponding vertical dispersion is the worst. Under the soil condition, the upward and downward pitching motion cycle of the gun is relatively stable, the ability to restore the initial position is strong, and the corresponding vertical dispersion is the best. In terms of quasi-periodic translational motion, the translational motion of the gun mount under the cement ground is the biggest, and the corresponding horizontal dispersion is also the biggest. Under the soil ground condition, the translational motion is the smallest, and the corresponding horizontal dispersion is also the smallest.","PeriodicalId":49956,"journal":{"name":"Journal of Vibroengineering","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibroengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21595/jve.2023.22834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In order to study the influence of ground conditions on the continuous firing vibration response of typical machine gun, and find out under which conditions the machine gun is most stable. A high-speed photography method was used to measure the motion of multiple parts. The motion curve of each part in the shooting process are obtained, and the projectile dispersion are recorded. According to the results, the motion characteristics of each part is analyzed. The pitching and translational quasi-periodic motions of the whole gun under different ground conditions are compared by synthesizing the motion data of various parts. The working modes of gun tripod under different ground conditions are discussed, and are compared according to the corresponding projectile dispersion. The result show that, in quasi-periodic pitching motion, the upward pitching motion response of the gun under the condition of cement ground is large, the ability to restore the initial position is poor, and the corresponding vertical dispersion is the worst. Under the soil condition, the upward and downward pitching motion cycle of the gun is relatively stable, the ability to restore the initial position is strong, and the corresponding vertical dispersion is the best. In terms of quasi-periodic translational motion, the translational motion of the gun mount under the cement ground is the biggest, and the corresponding horizontal dispersion is also the biggest. Under the soil ground condition, the translational motion is the smallest, and the corresponding horizontal dispersion is also the smallest.
期刊介绍:
Journal of VIBROENGINEERING (JVE) ISSN 1392-8716 is a prestigious peer reviewed International Journal specializing in theoretical and practical aspects of Vibration Engineering. It is indexed in ESCI and other major databases. Published every 1.5 months (8 times yearly), the journal attracts attention from the International Engineering Community.