{"title":"A review of the emergence of antibiotic resistance in bioaerosols and its monitoring methods","authors":"Gihan Lee, Keunje Yoo","doi":"10.1007/s11157-022-09622-3","DOIUrl":null,"url":null,"abstract":"<div><p>Despite significant public health concerns regarding infectious diseases in air environments, potentially harmful microbiological indicators, such as antibiotic resistance genes (ARGs) in bioaerosols, have not received significant attention. Traditionally, bioaerosol studies have focused on the characterization of microbial communities; however, a more serious problem has recently arisen due to the presence of ARGs in bioaerosols, leading to an increased prevalence of horizontal gene transfer (HGT). This constitutes a process by which bacteria transfer genes to other environmental media and consequently cause infectious disease. Antibiotic resistance in water and soil environments has been extensively investigated in the past few years by applying advanced molecular and biotechnological methods. However, ARGs in bioaerosols have not received much attention. In addition, ARG and HGT profiling in air environments is greatly limited in field studies due to the absence of suitable methodological approaches. Therefore, this study comprehensively describes recent findings from published studies and some of the appropriate molecular and biotechnological methods for monitoring antibiotic resistance in bioaerosols. In addition, this review discusses the main knowledge gaps regarding current methodological issues and future research directions.</p></div>","PeriodicalId":754,"journal":{"name":"Reviews in Environmental Science and Bio/Technology","volume":"21 3","pages":"799 - 827"},"PeriodicalIF":8.6000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11157-022-09622-3.pdf","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Environmental Science and Bio/Technology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11157-022-09622-3","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 16
Abstract
Despite significant public health concerns regarding infectious diseases in air environments, potentially harmful microbiological indicators, such as antibiotic resistance genes (ARGs) in bioaerosols, have not received significant attention. Traditionally, bioaerosol studies have focused on the characterization of microbial communities; however, a more serious problem has recently arisen due to the presence of ARGs in bioaerosols, leading to an increased prevalence of horizontal gene transfer (HGT). This constitutes a process by which bacteria transfer genes to other environmental media and consequently cause infectious disease. Antibiotic resistance in water and soil environments has been extensively investigated in the past few years by applying advanced molecular and biotechnological methods. However, ARGs in bioaerosols have not received much attention. In addition, ARG and HGT profiling in air environments is greatly limited in field studies due to the absence of suitable methodological approaches. Therefore, this study comprehensively describes recent findings from published studies and some of the appropriate molecular and biotechnological methods for monitoring antibiotic resistance in bioaerosols. In addition, this review discusses the main knowledge gaps regarding current methodological issues and future research directions.
期刊介绍:
Reviews in Environmental Science and Bio/Technology is a publication that offers easily comprehensible, reliable, and well-rounded perspectives and evaluations in the realm of environmental science and (bio)technology. It disseminates the most recent progressions and timely compilations of groundbreaking scientific discoveries, technological advancements, practical applications, policy developments, and societal concerns encompassing all facets of environmental science and (bio)technology. Furthermore, it tackles broader aspects beyond the natural sciences, incorporating subjects such as education, funding, policy-making, intellectual property, and societal influence.