Variable selection methods for water demand forecasting in Ethiopia: Case study Gondar town

Q2 Environmental Science Cogent Environmental Science Pub Date : 2018-01-01 DOI:10.1080/23311843.2018.1537067
M. Gedefaw, W. Hao, Denghua Yan, A. Girma
{"title":"Variable selection methods for water demand forecasting in Ethiopia: Case study Gondar town","authors":"M. Gedefaw, W. Hao, Denghua Yan, A. Girma","doi":"10.1080/23311843.2018.1537067","DOIUrl":null,"url":null,"abstract":"Abstract This study developed variable selection methods to forecast urban water demand of Gondar town. Seven variable selection methods are adopted to develop appropriate water demand forecasting model. Multiple linear regression analysis was used to investigate in identifying the optimal predictor variable for developing the water demand forecasting model. The results showed that PCA played a big role to identify the influential variables in modeling of water demand in a better way as compared to other statistical methods. We developed three models to forecast the demand of water in the study area. This study selected Model 1 since Model 1 gives accurate results as compared to Model 2 and Model 3.","PeriodicalId":45615,"journal":{"name":"Cogent Environmental Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23311843.2018.1537067","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent Environmental Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23311843.2018.1537067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 15

Abstract

Abstract This study developed variable selection methods to forecast urban water demand of Gondar town. Seven variable selection methods are adopted to develop appropriate water demand forecasting model. Multiple linear regression analysis was used to investigate in identifying the optimal predictor variable for developing the water demand forecasting model. The results showed that PCA played a big role to identify the influential variables in modeling of water demand in a better way as compared to other statistical methods. We developed three models to forecast the demand of water in the study area. This study selected Model 1 since Model 1 gives accurate results as compared to Model 2 and Model 3.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
埃塞俄比亚用水需求预测的变量选择方法:以贡达尔镇为例
摘要本研究开发了变量选择方法来预测贡达尔镇的城市需水量。采用七种变量选择方法建立了合适的需水量预测模型。采用多元线性回归分析法研究了确定最佳预测变量的方法,用于开发需水量预测模型。结果表明,与其他统计方法相比,主成分分析在识别需水量建模中的影响变量方面发挥了重要作用,效果更好。我们开发了三个模型来预测研究区域的用水需求。本研究选择了模型1,因为与模型2和模型3相比,模型1给出了准确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cogent Environmental Science
Cogent Environmental Science ENVIRONMENTAL SCIENCES-
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Effect of spirotetramat and 2,4-dichlorophenoxyacetic pesticides on two phytoplankton species (Monoraphidium griffithii and Coscinodiscus sp.) in a single and compound mixture laboratory exposure Analysing the challenges in implementing Vietnam’s Nationally-Determined Contribution (NDC) in the agriculture sector under the current legal, regulatory and policy environment Assessing spatial patterns of forest degradation in dry Miombo woodland in Southern Tanzania Dioxins in peat and its formation: An overview South Korea’s big move to hydrogen society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1