Positronium as a biomarker of hypoxia

IF 1.2 Q3 Computer Science Bio-Algorithms and Med-Systems Pub Date : 2021-12-01 DOI:10.1515/bams-2021-0189
P. Moskal, E. Stępień
{"title":"Positronium as a biomarker of hypoxia","authors":"P. Moskal, E. Stępień","doi":"10.1515/bams-2021-0189","DOIUrl":null,"url":null,"abstract":"Abstract In this review article, we present arguments demonstrating that the advent of high sensitivity total-body PET systems and the invention of the method of positronium imaging, open realistic perspectives for the application of positronium as a biomarker for in-vivo assessment of the degree of hypoxia. Hypoxia is a state or condition, in which the availability of oxygen is not sufficient to support physiological processes in tissue and organs. Positronium is a metastable atom formed from electron and positron which is copiously produced in the intramolecular spaces in the living organisms undergoing positron emission tomography (PET). Properties of positronium, such as e.g., lifetime, depend on the size of intramolecular spaces and the concentration in them of oxygen molecules. Therefore, information on the partial pressure of oxygen (pO2) in the tissue may be derived from the positronium lifetime measurement. The partial pressure of oxygen differs between healthy and cancer tissues in the range from 10 to 50 mmHg. Such differences of pO2 result in the change of ortho-positronium lifetime e.g., in water by about 2–7 ps. Thus, the application of positronium as a biomarker of hypoxia requires the determination of the mean positronium lifetime with the resolution in the order of 2 ps. We argue that such resolution is in principle achievable for organ-wise positronium imaging with the total-body PET systems.","PeriodicalId":42620,"journal":{"name":"Bio-Algorithms and Med-Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-Algorithms and Med-Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bams-2021-0189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 14

Abstract

Abstract In this review article, we present arguments demonstrating that the advent of high sensitivity total-body PET systems and the invention of the method of positronium imaging, open realistic perspectives for the application of positronium as a biomarker for in-vivo assessment of the degree of hypoxia. Hypoxia is a state or condition, in which the availability of oxygen is not sufficient to support physiological processes in tissue and organs. Positronium is a metastable atom formed from electron and positron which is copiously produced in the intramolecular spaces in the living organisms undergoing positron emission tomography (PET). Properties of positronium, such as e.g., lifetime, depend on the size of intramolecular spaces and the concentration in them of oxygen molecules. Therefore, information on the partial pressure of oxygen (pO2) in the tissue may be derived from the positronium lifetime measurement. The partial pressure of oxygen differs between healthy and cancer tissues in the range from 10 to 50 mmHg. Such differences of pO2 result in the change of ortho-positronium lifetime e.g., in water by about 2–7 ps. Thus, the application of positronium as a biomarker of hypoxia requires the determination of the mean positronium lifetime with the resolution in the order of 2 ps. We argue that such resolution is in principle achievable for organ-wise positronium imaging with the total-body PET systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
正电子作为缺氧的生物标志物
摘要在这篇综述文章中,我们提出的论点表明,高灵敏度全身PET系统的出现和正电子成像方法的发明,为正电子作为体内评估缺氧程度的生物标志物的应用开辟了现实的前景。缺氧是一种状态或状况,其中氧气的可用性不足以支持组织和器官的生理过程。正电子是一种由电子和正电子形成的亚稳态原子,在接受正电子发射断层扫描(PET)的生物体中的分子内空间中大量产生。正电子的性质,例如寿命,取决于分子内空间的大小和氧分子在其中的浓度。因此,关于组织中氧分压(pO2)的信息可以从正电子寿命测量中导出。健康组织和癌症组织之间的氧分压在10至50mmHg的范围内不同。pO2的这种差异导致邻位正电子寿命的变化,例如,在水中约2–7 ps。因此,正电子作为缺氧生物标志物的应用需要确定平均正电子寿命,分辨率约为2 ps。我们认为,这种分辨率原则上可用于全身PET系统的器官正电子成像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bio-Algorithms and Med-Systems
Bio-Algorithms and Med-Systems MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
3.80
自引率
0.00%
发文量
3
期刊介绍: The journal Bio-Algorithms and Med-Systems (BAMS), edited by the Jagiellonian University Medical College, provides a forum for the exchange of information in the interdisciplinary fields of computational methods applied in medicine, presenting new algorithms and databases that allows the progress in collaborations between medicine, informatics, physics, and biochemistry. Projects linking specialists representing these disciplines are welcome to be published in this Journal. Articles in BAMS are published in English. Topics Bioinformatics Systems biology Telemedicine E-Learning in Medicine Patient''s electronic record Image processing Medical databases.
期刊最新文献
Propagation of electrical signals by fungi Light induced spiking of proteinoids Transfer Functions of Proteinoid Microspheres Application of quantum entanglement induced polarization for dual-positron and prompt gamma imaging. Transcriptomic data analysis of melanocytes and melanoma cell lines of LAT transporter genes for precise medicine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1