{"title":"Influence of divalent cations on the biofouling behaviors of alginate hydrogels","authors":"Jiamin Zhang, Jia Ke, Yingnan Zhu, Jiayin Song, Jing Yang, Chiyu Wen, Lei Zhang","doi":"10.1088/1748-605X/ab4542","DOIUrl":null,"url":null,"abstract":"Alginate is one of the most favorable materials in many biomedical applications. The mechanical properties of alginate hydrogels can be easily tailored by adding different concentrations of divalent cations. In this work, we demonstrate that the method can also notably influence the biofouling behaviors of alginate hydrogels. A series of alginate hydrogels was prepared by tuning the concentrations of two types of divalent cation (Ca2+ or Ba2+). It was found that the biofouling behaviors of the hydrogels exhibited a ‘U’ curve tendency with the cation concentrations. Interestingly, we found that in optimal conditions ([Ca2+] = 0.9 mM or [Ba2+] = 0.54 mM), the resultant Ca0.9- and Ba0.54-alginate hydrogels were able to achieve negligible adhesion of the proteins and bacteria. Moreover, these two formulations were also able to prevent inflammatory responses at least 4 weeks after subcutaneous implantation in a mouse model. The findings in this work provide more insights into the design and development of appropriate alginate hydrogels for different applications.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2019-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/1748-605X/ab4542","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-605X/ab4542","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 7
Abstract
Alginate is one of the most favorable materials in many biomedical applications. The mechanical properties of alginate hydrogels can be easily tailored by adding different concentrations of divalent cations. In this work, we demonstrate that the method can also notably influence the biofouling behaviors of alginate hydrogels. A series of alginate hydrogels was prepared by tuning the concentrations of two types of divalent cation (Ca2+ or Ba2+). It was found that the biofouling behaviors of the hydrogels exhibited a ‘U’ curve tendency with the cation concentrations. Interestingly, we found that in optimal conditions ([Ca2+] = 0.9 mM or [Ba2+] = 0.54 mM), the resultant Ca0.9- and Ba0.54-alginate hydrogels were able to achieve negligible adhesion of the proteins and bacteria. Moreover, these two formulations were also able to prevent inflammatory responses at least 4 weeks after subcutaneous implantation in a mouse model. The findings in this work provide more insights into the design and development of appropriate alginate hydrogels for different applications.
期刊介绍:
The goal of the journal is to publish original research findings and critical reviews that contribute to our knowledge about the composition, properties, and performance of materials for all applications relevant to human healthcare.
Typical areas of interest include (but are not limited to):
-Synthesis/characterization of biomedical materials-
Nature-inspired synthesis/biomineralization of biomedical materials-
In vitro/in vivo performance of biomedical materials-
Biofabrication technologies/applications: 3D bioprinting, bioink development, bioassembly & biopatterning-
Microfluidic systems (including disease models): fabrication, testing & translational applications-
Tissue engineering/regenerative medicine-
Interaction of molecules/cells with materials-
Effects of biomaterials on stem cell behaviour-
Growth factors/genes/cells incorporated into biomedical materials-
Biophysical cues/biocompatibility pathways in biomedical materials performance-
Clinical applications of biomedical materials for cell therapies in disease (cancer etc)-
Nanomedicine, nanotoxicology and nanopathology-
Pharmacokinetic considerations in drug delivery systems-
Risks of contrast media in imaging systems-
Biosafety aspects of gene delivery agents-
Preclinical and clinical performance of implantable biomedical materials-
Translational and regulatory matters