Query Relaxation and Result Ranking for Uncertain Spatiotemporal XML Data

IF 1.3 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Database Management Pub Date : 2022-01-01 DOI:10.4018/jdm.313970
Luyi Bai, Jinyao Wang, Chengyuan Zhang, Xiangfu Meng
{"title":"Query Relaxation and Result Ranking for Uncertain Spatiotemporal XML Data","authors":"Luyi Bai, Jinyao Wang, Chengyuan Zhang, Xiangfu Meng","doi":"10.4018/jdm.313970","DOIUrl":null,"url":null,"abstract":"Due to the widespread uses of uncertain spatiotemporal data, web ordinary users have access to query these data in various ways. However, users often cannot accurately give query constraints so that the query results may be empty or very few. Traditional algorithms cannot be used to deal with uncertain spatiotemporal data because they have no relaxation query on spatiotemporal attributes. Therefore, in this paper, the authors propose new flexible query algorithms, which add relaxation query processing for spatiotemporal attributes. Considering that XML has great advantages in exchanging and representing spatiotemporal data, they propose an uncertain spatiotemporal data model based on XML. According to the different number of relaxing attributes, they give SingleRelaxation algorithm and MultipleRelaxation algorithm. In addition, a T-List structure is designed to quickly locate the nodes' positions of uncertain spatiotemporal data, and RSort algorithm is proposed to sort accurate query results and extended query results. The experimental results show the superiority of the approach.","PeriodicalId":51086,"journal":{"name":"Journal of Database Management","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Database Management","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/jdm.313970","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the widespread uses of uncertain spatiotemporal data, web ordinary users have access to query these data in various ways. However, users often cannot accurately give query constraints so that the query results may be empty or very few. Traditional algorithms cannot be used to deal with uncertain spatiotemporal data because they have no relaxation query on spatiotemporal attributes. Therefore, in this paper, the authors propose new flexible query algorithms, which add relaxation query processing for spatiotemporal attributes. Considering that XML has great advantages in exchanging and representing spatiotemporal data, they propose an uncertain spatiotemporal data model based on XML. According to the different number of relaxing attributes, they give SingleRelaxation algorithm and MultipleRelaxation algorithm. In addition, a T-List structure is designed to quickly locate the nodes' positions of uncertain spatiotemporal data, and RSort algorithm is proposed to sort accurate query results and extended query results. The experimental results show the superiority of the approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不确定时空XML数据的查询松弛与结果排序
由于不确定时空数据的广泛使用,网络普通用户可以通过各种方式查询这些数据。然而,用户通常无法准确地给出查询约束,因此查询结果可能为空或很少。传统算法不能用于处理不确定的时空数据,因为它们对时空属性没有松弛查询。因此,在本文中,作者提出了新的灵活查询算法,增加了时空属性的松弛查询处理。考虑到XML在时空数据交换和表示方面具有很大的优势,他们提出了一种基于XML的不确定时空数据模型。根据松弛属性个数的不同,分别给出了Single松弛算法和Multiple松弛算法。此外,设计了一种T-List结构来快速定位不确定时空数据的节点位置,并提出了RSort算法来对精确查询结果和扩展查询结果进行排序。实验结果表明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Database Management
Journal of Database Management 工程技术-计算机:软件工程
CiteScore
4.20
自引率
23.10%
发文量
24
期刊介绍: The Journal of Database Management (JDM) publishes original research on all aspects of database management, design science, systems analysis and design, and software engineering. The primary mission of JDM is to be instrumental in the improvement and development of theory and practice related to information technology, information systems, and management of knowledge resources. The journal is targeted at both academic researchers and practicing IT professionals.
期刊最新文献
Handling Imbalanced Data With Weighted Logistic Regression and Propensity Score Matching methods RDF(S) Store in Object-Relational Databases A Sample-Aware Database Tuning System With Deep Reinforcement Learning Narrativization in Information Systems Development Artificial Intelligence and Machine Learning for Job Automation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1