{"title":"Numerical Simulation of Solitary Waves Propagating on Stepped Slopes Beaches","authors":"Fayçal Chergui, M. Bouzit","doi":"10.37394/232013.2022.17.10","DOIUrl":null,"url":null,"abstract":"The objective of the current paper is to study the propagating and breaking of solitary waves on stepped slopes beaches, to simulate the shoaling and breaking, specifically the location of breaking point Xb, and solitary wave height at breaking Hb of solitary waves on the different stepped slopes. Ansys Fluent is used to implement the simulation, a two-dimensional volume of fluid (VOF) which is based on the Reynolds-Averaged Navier–Stokes (RANS) equations and the k–ε turbulence closure solver. The obtained results were firstly validated with existing empirical formulas for solitary wave run-up on the slope without stepped structure and are compared with the experimental and numerical results. The numerical computation has been carried out for several, configurations of beach slopes with tan ß= 1:15, 1:20, 1:25, wave height H0= 0.04, 0.06, 0.08m, water depth h0= 0.15, 0.2, 0.25m, and step height Sh= 0.025, 0.05, 0.075m. A set of numerical simulations were implemented to analyze shoaling and breaking of solitary waves, wave reflection, wave transmission, and wave run-up with various parameters wave heights, water depth, beach slopes, and Sh step height.","PeriodicalId":39418,"journal":{"name":"WSEAS Transactions on Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Fluid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232013.2022.17.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
The objective of the current paper is to study the propagating and breaking of solitary waves on stepped slopes beaches, to simulate the shoaling and breaking, specifically the location of breaking point Xb, and solitary wave height at breaking Hb of solitary waves on the different stepped slopes. Ansys Fluent is used to implement the simulation, a two-dimensional volume of fluid (VOF) which is based on the Reynolds-Averaged Navier–Stokes (RANS) equations and the k–ε turbulence closure solver. The obtained results were firstly validated with existing empirical formulas for solitary wave run-up on the slope without stepped structure and are compared with the experimental and numerical results. The numerical computation has been carried out for several, configurations of beach slopes with tan ß= 1:15, 1:20, 1:25, wave height H0= 0.04, 0.06, 0.08m, water depth h0= 0.15, 0.2, 0.25m, and step height Sh= 0.025, 0.05, 0.075m. A set of numerical simulations were implemented to analyze shoaling and breaking of solitary waves, wave reflection, wave transmission, and wave run-up with various parameters wave heights, water depth, beach slopes, and Sh step height.
期刊介绍:
WSEAS Transactions on Fluid Mechanics publishes original research papers relating to the studying of fluids. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of this particular area. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with multiphase flow, boundary layer flow, material properties, wave modelling and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.