Nanoestructuras de sílice, con diámetro y distribución de mesoporos variable, modificadas con ácido tungstofosfórico como catalizadores en la síntesis de quinoxalinas
{"title":"Nanoestructuras de sílice, con diámetro y distribución de mesoporos variable, modificadas con ácido tungstofosfórico como catalizadores en la síntesis de quinoxalinas","authors":"A. Sosa, G. Romanelli, L. R. Pizzio","doi":"10.15446/rev.colomb.quim.v49n2.84249","DOIUrl":null,"url":null,"abstract":"Tungstophosphoric acid supported on silica nanostructures (SNX#WPA) with variable diameter and mesopore size distribution were synthetized. Silica nanostructures (SNX) were prepared in octane/aqueous media using polystyrene and CTAB as organic templates. The materials were characterized by XRD, SEM, TEM and dinitrogen adsorption/desorption isotherm analysis. The octane/water ratio influenced the morphology and size of SNX prepared, as well as its pore size distribution. The SNX samples obtained using OCT/H 2 O ratios in the range 0.07-0.35 (SN4, SN5, and SN6 samples). present small (5-6 nm) and large (28-34 nm) mesopores (mainly generated by polystyrene). Large mesopores and their volume contribution were clearly higher than in the SN1, SN2, and SN3 samples. The structure and morphology of SNX#WPA samples were similar to those of the SNX. Furthermore, the characterization of all the SNX#WPA materials by FT-IR and 31 P NMR indicated the presence of undegraded [PW 12 O 40 ] 3− and [H 3-X PW 12 O 40 ] (3-X)− species. According to the potentiometric titration results, the solids presented very strong acid sites. The performance of SNX#WPA materials as catalysts in the synthesis of quinoxalines was evaluated. The yields achieved were high, without formation of by-products resulting from competitive reactions or decomposition products, so the prepared materials are highly selective and reusable catalysts.","PeriodicalId":43662,"journal":{"name":"Revista Colombiana de Quimica","volume":"49 1","pages":"37-43"},"PeriodicalIF":0.2000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.15446/rev.colomb.quim.v49n2.84249","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana de Quimica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/rev.colomb.quim.v49n2.84249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Tungstophosphoric acid supported on silica nanostructures (SNX#WPA) with variable diameter and mesopore size distribution were synthetized. Silica nanostructures (SNX) were prepared in octane/aqueous media using polystyrene and CTAB as organic templates. The materials were characterized by XRD, SEM, TEM and dinitrogen adsorption/desorption isotherm analysis. The octane/water ratio influenced the morphology and size of SNX prepared, as well as its pore size distribution. The SNX samples obtained using OCT/H 2 O ratios in the range 0.07-0.35 (SN4, SN5, and SN6 samples). present small (5-6 nm) and large (28-34 nm) mesopores (mainly generated by polystyrene). Large mesopores and their volume contribution were clearly higher than in the SN1, SN2, and SN3 samples. The structure and morphology of SNX#WPA samples were similar to those of the SNX. Furthermore, the characterization of all the SNX#WPA materials by FT-IR and 31 P NMR indicated the presence of undegraded [PW 12 O 40 ] 3− and [H 3-X PW 12 O 40 ] (3-X)− species. According to the potentiometric titration results, the solids presented very strong acid sites. The performance of SNX#WPA materials as catalysts in the synthesis of quinoxalines was evaluated. The yields achieved were high, without formation of by-products resulting from competitive reactions or decomposition products, so the prepared materials are highly selective and reusable catalysts.
期刊介绍:
The Revista Colombiana de Química - Colombian Journal of Chemistry (Rev. Colomb. Quim.) Is a peer-reviewed scientific journal of the Department of Chemistry, Faculty of Sciences of the Universidad Nacional de Colombia, Bogotá. It currently publishes three volumes per year: January-April, May-August and September-December. All the content published by the Journal (available online) is under a Creative Commons attribution license type BY 4.0, that allows any person or entity in the world to freely access the content, share it, download it, adapt it or make derivative works without any restriction, provided that it adequately indicates the credit to the authors and to the Colombian Journal of Chemistry.