{"title":"State-contingent production technology formulation: Identifying states of nature using reduced-form econometric models of crop yield","authors":"Raushan Bokusheva, Lajos Baráth","doi":"10.1111/ajae.12424","DOIUrl":null,"url":null,"abstract":"<p>Conducting experiments can be time consuming and expensive, and may not always be reasonable. Therefore, empirical research often derives structural parameters based on observational data and reduced-form econometric models. The state-contingent approach presents a consistent conceptual framework for analyzing producer decisions under uncertainty. However, application of this structural modeling approach has been hampered by data constraints, particularly the lack of information for mapping producers' stochastic outputs onto a set of the states of nature representing different uncertain events. Consistent mapping of uncertainty is particularly critical in the context of multiple output production where weather shocks often have different effects across crops and in microeconometric analyses when unobserved farm heterogeneity may confound the effect of uncertainty. Our study demonstrates how the application of reduced-form approaches can overcome constraints of structural econometric modeling associated with the lack of relevant data and presents an approach for identifying states of nature in the context of multiple output production using reduced-form econometric models of crop yield. In an empirical application based on Hungarian farm accountancy data, we demonstrate that the proposed approach allows a consistent mapping of production uncertainty in crop farming, utilizes panel data structure, and controls for potential endogeneity due to unobserved farm heterogeneity. We anticipate the presented approach to be useful for developing further the state-contingent approach and to stimulate further studies combining the strengths of structural approaches and reduced-form models.</p>","PeriodicalId":55537,"journal":{"name":"American Journal of Agricultural Economics","volume":"106 2","pages":"805-827"},"PeriodicalIF":4.2000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ajae.12424","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Agricultural Economics","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ajae.12424","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ECONOMICS & POLICY","Score":null,"Total":0}
引用次数: 0
Abstract
Conducting experiments can be time consuming and expensive, and may not always be reasonable. Therefore, empirical research often derives structural parameters based on observational data and reduced-form econometric models. The state-contingent approach presents a consistent conceptual framework for analyzing producer decisions under uncertainty. However, application of this structural modeling approach has been hampered by data constraints, particularly the lack of information for mapping producers' stochastic outputs onto a set of the states of nature representing different uncertain events. Consistent mapping of uncertainty is particularly critical in the context of multiple output production where weather shocks often have different effects across crops and in microeconometric analyses when unobserved farm heterogeneity may confound the effect of uncertainty. Our study demonstrates how the application of reduced-form approaches can overcome constraints of structural econometric modeling associated with the lack of relevant data and presents an approach for identifying states of nature in the context of multiple output production using reduced-form econometric models of crop yield. In an empirical application based on Hungarian farm accountancy data, we demonstrate that the proposed approach allows a consistent mapping of production uncertainty in crop farming, utilizes panel data structure, and controls for potential endogeneity due to unobserved farm heterogeneity. We anticipate the presented approach to be useful for developing further the state-contingent approach and to stimulate further studies combining the strengths of structural approaches and reduced-form models.
期刊介绍:
The American Journal of Agricultural Economics provides a forum for creative and scholarly work on the economics of agriculture and food, natural resources and the environment, and rural and community development throughout the world. Papers should relate to one of these areas, should have a problem orientation, and should demonstrate originality and innovation in analysis, methods, or application. Analyses of problems pertinent to research, extension, and teaching are equally encouraged, as is interdisciplinary research with a significant economic component. Review articles that offer a comprehensive and insightful survey of a relevant subject, consistent with the scope of the Journal as discussed above, will also be considered. All articles published, regardless of their nature, will be held to the same set of scholarly standards.