{"title":"Optic Disc and Optic Cup Segmentation for Glaucoma Detection from Blur Retinal Images Using Improved Mask-RCNN","authors":"Tahira Nazir, Aun Irtaza, V. Starovoitov","doi":"10.1155/2021/6641980","DOIUrl":null,"url":null,"abstract":"Glaucoma is a fatal eye disease that harms the optic disc (OD) and optic cup (OC) and results into blindness in progressed phases. Because of slow progress, the disease exhibits a small number of symptoms in the initial stages, therefore causing the disease identification to be a complicated task. So, a fully automatic framework is mandatory, which can support the screening process and increase the chances of disease detection in the early stages. In this paper, we deal with the localization and segmentation of the OD and OC for glaucoma detection from blur retinal images. We have presented a novel method that is Densenet-77-based Mask-RCNN to overcome the challenges of the glaucoma detection. Initially, we have performed the data augmentation step together with adding blurriness in samples to increase the diversity of data. Then, we have generated the annotations from ground-truth (GT) images. After that, the Densenet-77 framework is employed at the feature extraction level of Mask-RCNN to compute the deep key points. Finally, the calculated features are used to localize and segment the OD and OC by the custom Mask-RCNN model. For performance evaluation, we have used the ORIGA dataset that is publicly available. Furthermore, we have performed cross-dataset validation on the HRF database to show the robustness of the presented framework. The presented framework has achieved an average precision, recall, F-measure, and IOU as 0.965, 0.963, 0.97, and 0.972, respectively. The proposed method achieved remarkable performance in terms of both efficiency and effectiveness as compared to the latest techniques under the presence of blurring, noise, and light variations.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2021/6641980","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 14
Abstract
Glaucoma is a fatal eye disease that harms the optic disc (OD) and optic cup (OC) and results into blindness in progressed phases. Because of slow progress, the disease exhibits a small number of symptoms in the initial stages, therefore causing the disease identification to be a complicated task. So, a fully automatic framework is mandatory, which can support the screening process and increase the chances of disease detection in the early stages. In this paper, we deal with the localization and segmentation of the OD and OC for glaucoma detection from blur retinal images. We have presented a novel method that is Densenet-77-based Mask-RCNN to overcome the challenges of the glaucoma detection. Initially, we have performed the data augmentation step together with adding blurriness in samples to increase the diversity of data. Then, we have generated the annotations from ground-truth (GT) images. After that, the Densenet-77 framework is employed at the feature extraction level of Mask-RCNN to compute the deep key points. Finally, the calculated features are used to localize and segment the OD and OC by the custom Mask-RCNN model. For performance evaluation, we have used the ORIGA dataset that is publicly available. Furthermore, we have performed cross-dataset validation on the HRF database to show the robustness of the presented framework. The presented framework has achieved an average precision, recall, F-measure, and IOU as 0.965, 0.963, 0.97, and 0.972, respectively. The proposed method achieved remarkable performance in terms of both efficiency and effectiveness as compared to the latest techniques under the presence of blurring, noise, and light variations.
期刊介绍:
International Journal of Optics publishes papers on the nature of light, its properties and behaviours, and its interaction with matter. The journal considers both fundamental and highly applied studies, especially those that promise technological solutions for the next generation of systems and devices. As well as original research, International Journal of Optics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.