Solvent Extraction of Jatropha Oil for Biodiesel Production: Effects of Solvent-to-Solid Ratio, Particle Size, Type of Solvent, Extraction Time, and Temperature on Oil Yield

J. Ntalikwa
{"title":"Solvent Extraction of Jatropha Oil for Biodiesel Production: Effects of Solvent-to-Solid Ratio, Particle Size, Type of Solvent, Extraction Time, and Temperature on Oil Yield","authors":"J. Ntalikwa","doi":"10.1155/2021/9221168","DOIUrl":null,"url":null,"abstract":"The aim of this study was to examine the effects of solvent-to-solid ratio, particle size, extraction time, and temperature on the extraction of Jatropha oil using three organic solvents, i.e., n-hexane, petroleum ether, and ethanol. The Soxhlet extraction method was used, and the parameters were varied in the following ranges: extraction temperature of 24–80°C, extraction time of 2 to 8 h, solvent-to-solid ratio of 4 : 1 to 7 : 1, and particle size of 0.5–0.8 mm. After obtaining optimal conditions, a large volume of Jatropha oil was prepared, purified, and subjected to analysis of quality parameters. It was found that the oil content of the Jatropha curcas L. seeds used was 48.2 ± 0.12% w/w. The highest oil yield of 47.5 ± 0.11% w/w corresponding to an oil recovery of 98.6 ± 0.3% w/w was obtained with n-hexane under the following conditions: solvent-to-solid ratio of 6 : 1, particle size of 0.5–0.8 mm, extraction time of 7 h, and extraction temperature of 68°C. This was followed by that of petroleum ether (46.2 ± 0.15% w/w) and lastly by ethanol (43 ± 0.18% w/w). The quality parameters of the oil extracted compared favorably well with most of the values reported in the literature, suggesting that the oil was of good quality for biodiesel production. Environmental and safety concerns over the use of hexane pose a great challenge. Thus, ethanol, which is environmentally benign, is recommended for application. The conditions for ethanol extraction that gave high oil yield were as follows: extraction temperature of 70°C, extraction time of 7 h, solvent-to-solid ratio of 6 : 1, particle size of 0.5–0.8 mm, and oil yield of 43 ± 0.18% w/w corresponding to an oil recovery of 89.2 ± 0.4% w/w.","PeriodicalId":30460,"journal":{"name":"Journal of Renewable Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/9221168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The aim of this study was to examine the effects of solvent-to-solid ratio, particle size, extraction time, and temperature on the extraction of Jatropha oil using three organic solvents, i.e., n-hexane, petroleum ether, and ethanol. The Soxhlet extraction method was used, and the parameters were varied in the following ranges: extraction temperature of 24–80°C, extraction time of 2 to 8 h, solvent-to-solid ratio of 4 : 1 to 7 : 1, and particle size of 0.5–0.8 mm. After obtaining optimal conditions, a large volume of Jatropha oil was prepared, purified, and subjected to analysis of quality parameters. It was found that the oil content of the Jatropha curcas L. seeds used was 48.2 ± 0.12% w/w. The highest oil yield of 47.5 ± 0.11% w/w corresponding to an oil recovery of 98.6 ± 0.3% w/w was obtained with n-hexane under the following conditions: solvent-to-solid ratio of 6 : 1, particle size of 0.5–0.8 mm, extraction time of 7 h, and extraction temperature of 68°C. This was followed by that of petroleum ether (46.2 ± 0.15% w/w) and lastly by ethanol (43 ± 0.18% w/w). The quality parameters of the oil extracted compared favorably well with most of the values reported in the literature, suggesting that the oil was of good quality for biodiesel production. Environmental and safety concerns over the use of hexane pose a great challenge. Thus, ethanol, which is environmentally benign, is recommended for application. The conditions for ethanol extraction that gave high oil yield were as follows: extraction temperature of 70°C, extraction time of 7 h, solvent-to-solid ratio of 6 : 1, particle size of 0.5–0.8 mm, and oil yield of 43 ± 0.18% w/w corresponding to an oil recovery of 89.2 ± 0.4% w/w.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于生物柴油生产的麻疯树油的溶剂萃取:溶剂与固体比、粒度、溶剂类型、萃取时间和温度对油收率的影响
本研究的目的是考察溶剂与固体的比例、粒度、提取时间和温度对使用三种有机溶剂(即正己烷、石油醚和乙醇)提取麻风树油的影响。使用索氏提取法,参数在以下范围内变化:提取温度为24-80°C,提取时间为2-8 h、 溶剂与固体的比例为4 : 1至7 : 1,粒径为0.5–0.8 在获得最佳条件后,制备、纯化大体积麻疯树油,并进行质量参数分析。结果表明,麻疯树种子含油量为48.2 ± 0.12%w/w。最高产油量为47.5 ± 0.11%w/w,相当于98.6的石油采收率 ± 在以下条件下用正己烷获得0.3%w/w:溶剂与固体的比例为6 : 1、粒径0.5-0.8 mm,提取时间为7 h、 萃取温度为68°C。其次是石油醚(46.2 ± 0.15%w/w),最后通过乙醇(43 ± 0.18%w/w)。提取的油的质量参数与文献中报道的大多数值比较良好,表明该油对于生产生物柴油具有良好的质量。使用己烷引起的环境和安全问题是一个巨大的挑战。因此,建议使用对环境无害的乙醇。乙醇提取高油率的条件如下:提取温度70°C,提取时间7 h、 溶剂与固体的比例为6 : 1、粒径0.5-0.8 mm,出油率为43 ± 0.18%w/w,相当于89.2的石油采收率 ± 0.4%w/w。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
5
审稿时长
21 weeks
期刊最新文献
A Review on the Recent Advances in Battery Development and Energy Storage Technologies Technical Evaluation of Photovoltaic Systems in the Bamenda Municipality of the North West Region of Cameroon CFD Simulations and Experimental Investigation of a Flat-Plate Solar Air Heater at Different Positions of Inlet and Outlet Bioenergy Production Potential of Available Biomass Residue Resources in Ethiopia A Bottom-Up Approach to PV System Design for Rural Locality Electrification: A Case Study in Burkina Faso
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1